Skip to main content
Log in

Liposomal α-cyperone targeting bone resorption surfaces suppresses osteoclast differentiation and osteoporosis progression via the PI3K/Akt axis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Osteoporosis is a metabolic dysregulation of bone that occurs mainly in postmenopausal women, and the hyperfunction of osteoclasts is the primary contributor to postmenopausal osteoporosis. However, the development of effective therapeutic drugs and precise delivery systems remains a challenge in the field of anti-absorption therapy. Here, we reported the α-cyperone (α-CYP) for anti-osteoporosis and developed a liposome-based nano-drug delivery system of α-CYP, that specifically targets the bone resorption interface. Firstly, we found that the α-CYP, one of the major sesquiterpenes of Cyperus rotundus L., attenuated the progression of osteoporosis in ovariectomized (OVX) mice and down-regulated the expression of phosphorylated proteins of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt), causing down-regulation of osteoclast-related genes/proteins and curbing osteoclast differentiation. Furthermore, α-CYP reversed the activation of osteoclastic differentiation and enhanced osteoporosis-related proteins expression caused by PI3K/Akt agonist (YS-49). More importantly, we adopted the osteoclastic resorption surface targeting peptide Asp8 and constructed the liposome (lipaC@Asp8) to deliver α-CYP to osteoclasts and confirmed its anti-osteoporosis effect and enhanced osteoclast inhibition by blocking PI3K/Akt axis. In conclusion, this study demonstrated that α-CYP inhibits osteoclast differentiation and osteoporosis development by silencing PI3K/Akt pathway, and the liposome targeting delivery systems loaded with α-CYP might provide a novel and effective strategy to treat osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weitzmann, M. N.; Ofotokun, I. Physiological and pathophysiological bone turnover - role of the immune system. Nat. Rev. Endocrinol. 2016, 12, 518–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eastell, R.; O’Neill, T. W.; Hofbauer, L. C.; Langdahl, B.; Reid, I. R.; Gold, D. T.; Cummings, S. R. Postmenopausal osteoporosis. Nat. Rev. Dis. Primers 2016, 2, 16069.

    Article  PubMed  Google Scholar 

  3. Sipos, W.; Pietschmann, P.; Rauner, M. Strategies for novel therapeutic approaches targeting cytokines and signaling pathways of osteoclasto- and osteoblastogenesis in the fight against immunemediated bone and joint diseases. Curr. Med. Chem. 2008, 15, 127–136.

    Article  CAS  PubMed  Google Scholar 

  4. Li, H. X.; Xiao, Z. S.; Quarles, L. D.; Li, W. Osteoporosis: Mechanism, molecular target and current status on drug development. Curr. Med. Chem. 2021, 28, 1489–1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, S.; Kim, G. J.; Kwon, H.; Nam, J. W.; Baek, J. Y.; Shim, S. H.; Choi, H.; Kang, K. S. Estrogenic effects of extracts and isolated compounds from belowground and aerial parts of Spartina anglica. Mar. Drugs 2021, 19, 210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zeytinoglu, M.; Naaman, S. C.; Dickens, L. T. Denosumab discontinuation in patients treated for low bone density and osteoporosis. Endocrinol. Metab. Clin. North Am. 2021, 50, 205–222.

    Article  PubMed  Google Scholar 

  7. Black, D. M.; Rosen, C. J. Postmenopausal osteoporosis. N. Engl. J. Med. 2016, 374, 254–262.

    Article  CAS  PubMed  Google Scholar 

  8. Horn, C.; Vediyappan, G. Anticapsular and antifungal activity of α-Cyperone. Antibiotics 2021, 10, 51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang, B.; Liu, J.; Fu, S.; Zhang, Y.; Li, Y.; He, D.; Ran, X.; Yan, X.; Du, J.; Meng, T.; Gao, X.; Liu, D. α-Cyperone Attenuates H(2)O(2)-Induced Oxidative Stress and Apoptosis in SH-SY5Y Cells via Activation of Nrf2. Front Pharmacol 2020, 11 281.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang, B. X.; He, D. W.; Chen, G. X.; Ran, X.; Guo, W. J.; Kan, X. C.; Wang, W.; Liu, D. F.; Fu, S. P.; Liu, J. X. α-Cyperone inhibits LPS-induced inflammation in BV-2 cells through activation of Akt/Nrf2/HO-1 and suppression of the NF-κB pathway. Food Funct. 2018, 9, 2735–2743.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, H. W.; Li, S. L.; Lu, J. J.; Jin, J.; Zhu, G. S.; Wang, L. B.; Yan, Y. Z.; He, L. J.; Wang, B.; Wang, X. Y. et al. α-Cyperone (CYP) down-regulates NF-κB and MAPKs signaling, attenuating inflammation and extracellular matrix degradation in chondrocytes, to ameliorate osteoarthritis in mice. Aging 2021, 13, 17690–17706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kum, C. J.; Kim, E. Y.; Kim, J. H.; Lee, B.; Min, J. H.; Heo, J.; Kim, J. H.; Yeom, M.; Sohn, Y.; Jung, H. S. Cyperus rotundus L. extract suppresses RANKL-induced osteoclastogenesis through NFATc1/c-fos downregulation and prevent bone loss in OVX-induced osteoporosis rat. J. Ethnopharmacol. 2017, 205, 186–194.

    Article  CAS  PubMed  Google Scholar 

  13. Nirwan, N.; Nikita; Sultana, Y.; Vohora, D. Liposomes as multifaceted delivery system in the treatment of osteoporosis. Expert Opin. Drug Deliv. 2021, 18, 761–775.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, D.; Miller, S. C.; Shlyakhtenko, L. S.; Portillo, A. M.; Liu, X. M.; Papangkorn, K.; Kopečková, P.; Lyubchenko, Y.; Higuchi, W. I.; Kopeček, J. Osteotropic Peptide that differentiates functional domains of the skeleton. Bioconjug. Chem. 2007, 18, 1375–1378.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, G.; Guo, B. S.; Wu, H.; Tang, T.; Zhang, B. T.; Zheng, L. Z.; He, Y. X.; Yang, Z. J.; Pan, X. H.; Chow, H. et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat. Med. 2012, 18, 307–314.

    Article  PubMed  Google Scholar 

  16. Armas, L. A. G.; Recker, R. R. Pathophysiology of osteoporosis: New mechanistic insights. Endocrinol. Metab. Clin. North Am. 2012, 41, 475–486.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, M. J.; Yu, J. Y.; Liu, A.; Liu, Q. Q.; Sun, T.; Li, X.; Du, Y. Y.; Li, J. M.; Wang, B.; Yang, Q. Luteolin in the Qi Bi Anshen decoction improves propionic acid-induced autism-like behavior in rats by inhibiting LRP1/MMP9. Phytomedicine 2023, 118, 154965.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, T. X.; Chen, M.; Li, H. X.; Ding, G. Y.; Song, Y. F.; Hou, B.; Yao, B.; Wang, Z. X.; Hou, Y. L.; Liang, J. Q. et al. Repositioning of clinically approved drug Bazi Bushen capsule for treatment of Aizheimer’s disease using network pharmacology approach and in vitro experimental validation. Heliyon 2023, 9, e17603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jia, X. Y.; He, Y. H.; Li, L.; Xu, D. L. Pharmacological targeting of gastric mucosal barrier with traditional Chinese medications for repairing gastric mucosal injury. Front. Pharmacol. 2023, 14, 1091530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alam, S. S. M.; Samanta, A.; Uddin, F.; Ali, S.; Hoque, M. Tanshinone IIA targeting cell signaling pathways: A plausible paradigm for cancer therapy. Pharmacol. Rep. 2023, 75, 907–922.

    Article  CAS  PubMed  Google Scholar 

  21. Yang, F. G.; Zhang, S. H.; Tian, D. M.; Zhou, G. R.; Tang, X. Y.; Miao, X. L.; He, Y.; Yao, X. S.; Tang, J. S. Deciphering chemical and metabolite profiling of Chang-Kang-Fang by UPLC-Q-TOF-MS/MS and its potential active components identification. Chin. J. Nat. Med. 2023, 21, 459–480.

    CAS  PubMed  Google Scholar 

  22. Liu, X. S. B. J.; Jin, X. T.; Yu, D.; Liu, G. Suppression of NLRP3 and NF-κB signaling pathways by α-Cyperone via activating SIRT1 contributes to attenuation of LPS-induced acute lung injury in mice. Int. Immunopharmacol. 2019, 76, 105886.

    Article  CAS  PubMed  Google Scholar 

  23. Jung, S. H.; Kim, S. J.; Jun, B. G.; Lee, K. T.; Hong, S. P.; Oh, M. S.; Jang, D. S.; Choi, J. H. α-Cyperone, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced COX-2 expression and PGE2 production through the negative regulation of NFκB signalling in RAW 264.7 cells. J. Ethnopharmacol. 2013, 147, 208–214.

    Article  CAS  PubMed  Google Scholar 

  24. Huang, B. X.; Hu, G. Q.; Zong, X. F.; Yang, S.; He, D. W.; Gao, X. Y.; Liu, D. F. α-Cyperone protects dopaminergic neurons and inhibits neuroinflammation in LPS-induced Parkinson’s disease rat model via activating Nrf2/HO-1 and suppressing NF-κB signaling pathway. Int. Immunopharmacol. 2023, 115, 109698.

    Article  CAS  PubMed  Google Scholar 

  25. Pei, X. D.; Yao, H. L.; Shen, L. Q.; Yang, Y.; Lu, L.; Xiao, J. S.; Wang, X. Y.; He, Z. L.; Jiang, L. H. α-Cyperone inhibits the proliferation of human cervical cancer HeLa cells via ROS-mediated PI3K/Akt/mTOR signaling pathway. Eur. J. Pharmacol. 2020, 883, 173355.

    Article  CAS  PubMed  Google Scholar 

  26. Hopkins, A. L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690.

    Article  CAS  PubMed  Google Scholar 

  27. Lee, S. E.; Woo, K. M.; Kim, S. Y.; Kim, H. M.; Kwack, K.; Lee, Z. H.; Kim, H. H. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone 2002, 30, 71–77.

    Article  CAS  PubMed  Google Scholar 

  28. Liang, J. Y.; Wu, W. L.; Chen, Y. X.; Liu, H. C. The efficacy and potential mechanism of cnidium lactone to inhibit osteoclast differentiation. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3087–3093.

    Article  CAS  PubMed  Google Scholar 

  29. Soysa, N. S.; Alles, N. Osteoclast function and bone-resorbing activity: An overview. Biochem. Biophys. Res. Commun. 2016, 476, 115–120.

    Article  CAS  PubMed  Google Scholar 

  30. Boyle, W. J.; Simonet, W. S.; Lacey, D. L. Osteoclast differentiation and activation. Nature 2003, 423, 337–342.

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Dumortier, C.; Danopoulos, S.; Velard, F.; Al Alam, D. Bone cells differentiation: How CFTR mutations may rule the game of stem cells commitment. Front. Cell Dev. Biol. 2021, 9, 611921.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guo, W.; Li, H. J.; Lou, Y.; Zhang, Y.; Wang, J.; Qian, M.; Wei, H. F.; Xiao, J. R.; Xu, Y. J. Tyloxapol inhibits RANKL-stimulated osteoclastogenesis and ovariectomized-induced bone loss by restraining NF-κB and MAPK activation. J. Orthop. Translat. 2021, 28, 148–158.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bobo, D.; Robinson, K. J.; Islam, J.; Thurecht, K. J.; Corrie, S. R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373–2387.

    Article  CAS  PubMed  Google Scholar 

  34. Dang, L.; Liu, J.; Li, F. F.; Wang, L. Y.; Li, D. F.; Guo, B. S.; He, X. J.; Jiang, F.; Liang, C.; Liu, B. et al. Targeted delivery systems for molecular therapy in skeletal disorders. Int. J. Mol. Sci. 2016, 17, 428.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Waldrep, J. C.; Gilbert, B. E.; Knight, C. M.; Black, M. B.; Scherer, P. W.; Knight, V.; Eschenbacher, W. Pulmonary delivery of beclomethasone liposome aerosol in volunteers: Tolerance and safety. Chest 1997, 111, 316–323.

    Article  CAS  PubMed  Google Scholar 

  36. Chang, M. L.; Lu, S. S.; Zhang, F.; Zuo, T. T.; Guan, Y. Y.; Wei, T.; Shao, W.; Lin, G. M. RGD-modified pH-sensitive liposomes for docetaxel tumor targeting. Colloids Surf. B: Biointerfaces 2015, 129, 175–182.

    Article  CAS  PubMed  Google Scholar 

  37. Wieland, K.; Ramer, G.; Weiss, V. U.; Allmaier, G.; Lendl, B.; Centrone, A. Nanoscale chemical imaging of individual chemotherapeutic cytarabine-loaded liposomal nanocarriers. Nano Res 2019, 12, 197–203.

    Article  CAS  Google Scholar 

  38. Wang, D.; Sima, M.; Lee Mosley, R.; Davda, J. P.; Tietze, N.; Miller, S. C.; Gwilt, P. R.; Kopečková, P.; Kopeček, J. Pharmacokinetic and biodistribution studies of a bone-targeting drug delivery system based on N-(2-hydroxypropyl)methacrylamide copolymers. Mol. Pharm. 2006, 3, 717–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, D.; Miller, S.; Sima, M.; Kopečková, P.; Kopeček, J. Synthesis and evaluation of water-soluble polymeric bone-targeted drug delivery systems. Bioconjug. Chem. 2003, 14, 853–859.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Project (No. 2021YFA1201404), Major Project of the National Natural Science Foundation of China (Nos. 81991514, 82272530), Jiangsu Province Medical Innovation Center of Orthopedic Surgery (No. CXZX202214), Jiangsu Provincial Key Medical Center Foundation, Jiangsu Provincial Medical Outstanding Talent Foundation, Jiangsu Provincial Medical Youth Talent Foundation, Jiangsu Provincial Key Medical Talent Foundation, and the Fundamental Research Funds for the Central Universities (Nos. 14380493 and 14380494).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baosheng Guo or Qing Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., An, X., Gong, W. et al. Liposomal α-cyperone targeting bone resorption surfaces suppresses osteoclast differentiation and osteoporosis progression via the PI3K/Akt axis. Nano Res. 17, 2949–2959 (2024). https://doi.org/10.1007/s12274-023-6224-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6224-7

Keywords

Navigation