Skip to main content
Log in

Micro/nanoelectrode-based electrochemical methodology for single cell and organelle analysis

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cells are the basic unit of life. Electrochemical analysis of single cells/organelles is essential for uncovering the molecular mechanisms of physiological and pathological processes that are difficult to elucidate on a larger scale. This paper provides an overview of the commonly used fabrication methods for micro/nanoelectrodes applied in the investigations of single cells/organelles as well as the corresponding electrochemical measurements over the last four years including extracellular measurement, combination of extra and intracellular measurement, intracellular reactive oxygen species and reactive nitrogen species (ROS/RNS) measurement, and isolated organelles measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amatore, C.; Arbault, S.; Guille, M.; Lemaître, F. Electrochemical monitoring of single cell secretion: Vesicular exocytosis and oxidative stress. Chem. Rev. 2008, 108, 2585–2621.

    Article  CAS  Google Scholar 

  2. Chen, G.; Ewing, A. G. Chemical analysis of single cells and exocytosis. Crit Rev Neurobiol. 1997, 11, 59–90.

    Article  Google Scholar 

  3. Zhang, X. W.; Hatamie, A.; Ewing, A. G. Nanoelecroochemical analysis inside a single living cell. Curr. Opin. Electrochem. 2020, 22, 94–101.

    Article  CAS  Google Scholar 

  4. Wightman, R. M. Probing cellular chemistry in biological systems with microelectrodes. Science 2006, 311, 1570–1574.

    Article  CAS  Google Scholar 

  5. Schulte, A.; Schuhmann, W. Siggle-cell microelectrochemistry. Angew. Chem., Int. Ed. 2007, 46, 8760–8777.

    Article  CAS  Google Scholar 

  6. Wightman, R. M.; Jankowski, J. A.; Kennedy, R. T.; Kawagoe, K. T.; Schroeder, T. J.; Leszczyszyn, D. J.; Near, J. A.; Diliberto, E. J. Jr.; Viveros, O. H. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc. Natl. Acad. Sci. USA 1991, 88, 10754–10758.

    Article  CAS  Google Scholar 

  7. Xu, C.; Jiang, Y.; Yu, P.; Mao, L. Q. Brain electrochemistry. J. Electrochem. 2022, 28, 2108551.

    Google Scholar 

  8. Liu, Y. D.; Li, J. R.; Zhang, L. M.; Tian, Y. An aptamer-based microelectrode with tunable linear range for monitoring of K+ in the living mouse brain. J. Electrochem. 2023, 29, 2218004.

    Google Scholar 

  9. Li, Y. T.; Zhang, S. H.; Wang, L.; Xiao, R. R.; Liu, W.; Zhang, X. W.; Zhou, Z.; Amatore, C.; Huang, W. H. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses. Angew. Chem., Int. Ed. 2014, 55, 12456–12460.

    Article  Google Scholar 

  10. Zhang, X. W.; Qiu, Q. F.; Jiang, H.; Zhang, F. L.; Liu, Y. L.; Amatore, C.; Huang, W. H. Real-time intracellular measurements of ROS and RNS in living cells with single core-shell nanowire electrodes. Angew. Chem., Int. Ed. 2017, 56, 12997–13000.

    Article  CAS  Google Scholar 

  11. Clausmeyer, J.; Wilde, P.; Löffler, T.; Ventosa, E.; Tschulik, K.; Schuhmann, W. Detection of individual nanoparticle impacts using etched carbon nanoelectrodes. Electrochem. Commun. 2016, 73, 67–70.

    Article  CAS  Google Scholar 

  12. Clausmeyer, J.; Masa, J.; Ventosa, E.; öhl, D.; Schuhmann, W. Nanoelectrodes reveal the electrochemistry of single nickelhydroxide nanoparticles. Chem. Commun. 2016, 52, 2408–2411.

    Article  CAS  Google Scholar 

  13. Hu, K. K.; Wang, Y. X.; Cai, H. J.; Mirkin, M. V.; Gao, Y.; Friedman, G.; Gogotsi, Y. Open carbon nanopipettes as resistive-pulse sensors, rectification sensors, and electrochemical nanoprobes. Anal. Chem. 2014, 86, 8897–8901.

    Article  CAS  Google Scholar 

  14. Tanwar, A.; Gandhi, H. A.; Kushwaha, D.; Bhattacharya, J. A review on microelectrode array fabrication techniques and their applications. Mater. Today Chem. 2022, 26, 101153.

    Article  Google Scholar 

  15. Ranjbari, E.; Taleat, Z.; Mapar, M.; Aref, M.; Dunevall, J.; Ewing, A. Direct measurement of total vesicular catecholamine content with electrochemical microwell arrays. Anal. Chem. 2020, 92, 11325–11331.

    Article  CAS  Google Scholar 

  16. Kawagoe, K. T.; Jankowski, J. A.; Wightman, R. M. Etched carbone fiber electrodes as amperometric detectors of catecholamine secretion from isolated biological cells. Anal. Chem. 1991, 65, 1589–1594.

    Article  Google Scholar 

  17. Li, X. C.; Majdi, S.; Dunevall, J.; Fathali, H.; Ewing, A. G. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Angew. Chem., Int. Ed. 2015, 54, 11978–11982.

    Article  CAS  Google Scholar 

  18. Strein, T. G.; Ewing, A. G. Characterization of submicron-sized carbon electrodes insulated with a phenol-allylphenol copolymer. Anal. Chem. 1992, 64, 1368–1373.

    Article  CAS  Google Scholar 

  19. Huang, W. H.; Pang, D. W.; Tong, H.; Wang, Z. L.; Cheng, J. K. A method for the fabrication of low-noise carbon fiber nanoelectrodes. Anal. Chem. 2001, 75, 1048–1052.

    Article  Google Scholar 

  20. Strand, A. M.; Venton, B. J. Flame etching enhances the sensitivity of carbon-fiber microelectrodes. Anal. Chem. 2008, 80, 3708–3715.

    Article  CAS  Google Scholar 

  21. Liao, Q. L.; Jiang, H.; Zhang, X. W.; Qiu, Q. F.; Tang, Y.; Yang, X. K.; Liu, Y. L.; Huang, W. H. A single nanowire sensor for intracellular glucose detection. Nanoscale 2019, 11, 10702–10708.

    Article  CAS  Google Scholar 

  22. Jiang, H.; Zhang, X. W.; Liao, Q. L.; Wu, W. T.; Liu, Y. L.; Huang, W. H. Electrochemical monitoring of paclitaxel-induced ROS release from mitochondria inside single cells. Small 2019, 15, 1901787.

    Article  CAS  Google Scholar 

  23. Yang, X. K.; Zhang, F. L.; Wu, W. T.; Tang, Y.; Yan, J.; Liu, Y. L.; Amatore, C.; Huang, W. H. Quantitative Nano-amperometric measurement of intravesicular glutamate content and its sub-quantal release by living neurons. Angew. Chem., Int. Ed. 2021, 60, 15803–15808.

    Article  CAS  Google Scholar 

  24. Kim, Y. T.; Scarnulis, D. M.; Ewing, A. G. Carbon-ring electrodes with 1-µm tip diameter. Anal. Chem. 1986, 58, 1782–1786.

    Article  CAS  Google Scholar 

  25. McKelvey, K.; Nadappuram, B. P.; Actis, P.; Takahashi, Y.; Korchev, Y. E.; Matsue, T.; Robinson, C.; Unwin, P. R. Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM). Anal. Chem. 2013, 85, 7519–7526.

    Article  CAS  Google Scholar 

  26. McNally, M.; Wong, D. K. Y. An in vivo probe based on mechanically strong but structurally small carbon electrodes with an appreciable surface area. Anal. Chem. 2001, 73, 4793–4800.

    Article  CAS  Google Scholar 

  27. Nadappuram, B. P.; McKelvey, K.; Al Botros, R.; Colburn, A. W.; Unwin, P. R. Fabrication and characterization of dual function nanoscale pH-scanning ion conductance microscopy (SICM) probes for high resolution pH mapping. Anal. Chem. 2013, 85, 8070–8074.

    Article  CAS  Google Scholar 

  28. Takahashi, Y.; Shevchuk, A. I.; Novak, P.; Zhang, Y. J.; Ebejer, N.; Macpherson, J. V.; Unwin, P. R.; Pollard, A. J.; Roy, D.; Clifford, C. A. et al. Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. Angew. Chem., Int. Ed. 2011, 56, 9638–9642.

    Article  Google Scholar 

  29. Wong, D. K. Y.; Xu, L. Y. F. Voltammetric studies of carbon disk electrodes with submicrometer-sized structural diameters. Anal. Chem. 1995, 67, 4086–4090.

    Article  CAS  Google Scholar 

  30. Hu, K. K.; Gao, Y.; Wang, Y. X.; Yu, Y.; Zhao, X.; Rotenberg, S. A.; Gökmeşe, E.; Mirkin, M. V.; Friedman, G.; Gogotsi, Y. Platinized carbon nanoelectrodes as potentiometric and amperometric SECM probes. J. Solid State Electrochem. 2013, 17, 2971–2977.

    Article  CAS  Google Scholar 

  31. Singhal, R.; Bhattacharyya, S.; Orynbayeva, Z.; Vitol, E.; Friedman, G.; Gogotsi, Y. Small diameter carbon nanopipettes. Nanotechnology 2010, 21, 015304.

    Article  Google Scholar 

  32. Vitol, E. A.; Schrlau, M. G.; Bhattacharyya, S.; Ducheyne, P.; Bau, H. H.; Friedman, G.; Gogotsi, Y. Effects of deposition conditions on the structure and chemical properties of carbon nanopipettes. Chem. Vap. Deposition 2009, 15, 204–208.

    Article  CAS  Google Scholar 

  33. Yu, Y.; Noël, J. M.; Mirkin, M. V.; Gao, Y.; Mashtalir, O.; Friedman, G.; Gogotsi, Y. Carbon pipette-based electrochemical nanosampler. Anal. Chem. 2014, 86, 3365–3372.

    Article  CAS  Google Scholar 

  34. Pan, R. R.; Xu, M. C.; Burgess, J. D.; Jiang, D. C.; Chen, H. Y. Direct electrochemical observation of glucosidase activity in isolated single lysosomes from a living cell. Proc. Natl. Acad. Sci. USA 2018, 115, 4087–4092.

    Article  CAS  Google Scholar 

  35. Pan, R. R.; Xu, M. C.; Jiang, D. C.; Burgess, J. D.; Chen, H. Y. Nanokit for single-cell electrochemical analyses. Proc. Natl. Acad. Sci. USA 2016, 113, 11436–11440.

    Article  CAS  Google Scholar 

  36. Jiao, Y. T.; Jiang, H.; Wu, W. T.; Qi, Y. T.; Wen, M. Y.; Yang, X. K.; Kang, Y. R.; Zhang, X. W.; Amatore, C.; Huang, W. H. Dual-channel nanoelectrochemical sensor for monitoring intracellular ROS and NADH kinetic variations of their concentrations. Biosens. Bioelectron. 2023, 222, 114928.

    Article  CAS  Google Scholar 

  37. Qi, Y. T.; Jiang, H.; Wu, W. T.; Zhang, F. L.; Tian, S. Y.; Fan, W. T.; Liu, Y. L.; Amatore, C.; Huang, W. H. Homeostasis inside single activated phagolysosomes: Quantitative and selective measurements of submillisecond dynamics of reactive oxygen and nitrogen species production with a nanoelectrochemical sensor. J. Am. Chem. Soc. 2022, 144, 9723–9733.

    Article  CAS  Google Scholar 

  38. Huang, X. J.; O’Mahony, A. M.; Compton, R. G. Microelectrode arrays for electrochemistry: Approaches to fabrication. Small 2009, 5, 776–788.

    Article  CAS  Google Scholar 

  39. Zaouk, R.; Park, B. Y.; Madou, M. J. Introduction to microfabrication techniques. In Microfluidic Techniques: Reviews and Protocols. Minteer, S. D., Ed.; Humana Press: Totowa, 2006; pp 5–15.

    Google Scholar 

  40. Abbott, J.; Ye, T. Y.; Qin, L.; Jorgolli, M.; Gertner, R. S.; Ham, D.; Park, H. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 2017, 12, 460–466.

    Article  CAS  Google Scholar 

  41. Zheng, T. Y.; Zhang, Z. Z.; Zhu, R.; Sun, D. A microelectrode array chip for osteogenic differentiation of mesenchymal stem cells under electrical stimulation. Lab Chip 2020, 20, 373–383.

    Article  CAS  Google Scholar 

  42. Zheng, T. Y.; Zhang, Z. Z.; Zhu, R. Flexible trapping and manipulation of single cells on a chip by modulating phases and amplitudes of electrical signals applied onto microelectrodes. Anal. Chem. 2019, 91, 4479–4487.

    Article  CAS  Google Scholar 

  43. Phan, N. T. N.; Li, X. C.; Ewing, A. G. Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging. Nat. Rev. Chem. 2017, 1, 0048.

    Article  CAS  Google Scholar 

  44. Wang, M. Y.; Liu, Y. Y.; Du, J. C.; Zhou, J. L.; Cao, L. J.; Li, X. C. Cisplatin inhibits neurotransmitter release during exocytosis from single chromaffin cells monitored with single cell amperometry. Electroanalysis 2022, 34, 981–986.

    Article  CAS  Google Scholar 

  45. He, X. L.; Ewing, A. G. Concentration of stimulant regulates initial exocytotic molecular plasticity at single cells. Chem. Sci. 2022, 13, 1815–1822.

    Article  CAS  Google Scholar 

  46. He, X. L.; Ewing, A. G. Counteranions in the stimulation solution alter the dynamics of exocytosis consistent with the hofmeister series. J. Am. Chem. Soc. 2020, 142, 12591–12595.

    Article  CAS  Google Scholar 

  47. He, X.; Ewing, A. G. Hofmeister series: From aqueous solution of biomolecules to single cells and nanovesicles. ChemBioChem 2023, 24, e202200694.

    Article  CAS  Google Scholar 

  48. Gu, C. Y.; Zhang, X. W.; Ewing, A. G. Comparison of disk and Nanotip electrodes for measurement of single-cell amperometry during exocytotic release. Anal. Chem. 2020, 92, 10268–10273.

    Article  CAS  Google Scholar 

  49. McCarty, G. S.; Dunaway, L. E.; Denison, J. D.; Sombers, L. A. Neurotransmitter readily escapes detection at the opposing microelectrode surface in typical amperometric measurements of exocytosis at single cells. Anal. Chem. 2022, 94, 9548–9556.

    Article  CAS  Google Scholar 

  50. Jia, R.; Rotenberg, S. A.; Mirkin, M. V. Electrochemical resistive-pulse sensing of extracellular vesicles. Anal. Chem. 2022, 94, 12614–12620.

    Article  CAS  Google Scholar 

  51. Hu, K. K.; Le Vo, K. L.; Wang, F.; Zhang, X.; Gu, C. Y.; Fang, N.; Phan, N. T. N.; Ewing, A. G. Single exosome amperometric measurements reveal encapsulation of chemical messengers for intercellular communication. J. Am. Chem. Soc. 2023, 145, 11499–11503.

    Article  CAS  Google Scholar 

  52. Frebel, H.; Chemnitius, G. C.; Cammann, K.; Kakerow, R.; Rospert, M.; Mokwa, W. Multianalyte sensor for the simultaneous determination of glucose, L-lactate and uric acid based on a microelectrode array. Sens. Actuators B: Chem. 1997, 43, 87–93.

    Article  CAS  Google Scholar 

  53. Chuang, M. C.; Lai, H. Y.; Annie Ho, J. A.; Chen, Y. Y. Multifunctional microelectrode array (mMEA) chip for neural-electrical and neural-chemical interfaces: Characterization of comb interdigitated electrode towards dopamine detection. Biosens. Bioelectron. 2013, 41, 602–607.

    Article  CAS  Google Scholar 

  54. Yang, L. H.; Liu, X. B.; Yin, B.; Deng, X. X.; Lin, X. T.; Song, J.; Wu, S. High-throughput and real-time monitoring of single-cell extracellular pH based on polyaniline microarrays. Anal. Chem. 2021, 93, 13852–13860.

    Article  CAS  Google Scholar 

  55. Wang, N. N.; Ao, H.; Xiao, W. C.; Chen, W. W.; Li, G. M.; Wu, J.; Ju, H. X. Confined electrochemiluminescence imaging microarray for high-throughput biosensing of single cell-released dopamine. Biosens. Bioelectron. 2022, 261, 113959.

    Article  Google Scholar 

  56. Tian, Z. Y.; Qin, X.; Shao, F. Y.; Li, X. X.; Wang, Z.; Liu, S. Q.; Wu, Y. F. Electrofluorochromic imaging analysis of dopamine release from living PC12 cells with bipolar nanoelectrodes array. Chin. Chem. Lett. 2023, 34, 107656.

    Article  CAS  Google Scholar 

  57. Guo, X. L.; Zhu, R. Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array. Sci. Rep. 2016, 6, 31392.

    Article  CAS  Google Scholar 

  58. Neumann, E.; Tönsing, K.; Siemens, P. Perspectives for microelectrode arrays for biosensing and membrane electroporation. Bioelectrochemistry 2000, 51, 125–132.

    Article  CAS  Google Scholar 

  59. Chang, L. Q.; Li, L.; Shi, J. F.; Sheng, Y.; Lu, W.; Gallego-Perez, D.; Lee, L. J. Micro-/nanoscale electroporation. Lab Chip 2016, 16, 4047–4062.

    Article  CAS  Google Scholar 

  60. Zhang, Z. Z.; Zheng, T. Y.; Zhu, R. Single-cell individualized electroporation with real-time impedance monitoring using a microelectrode array chip. Microsyst. Nanoeng. 2020, 6, 81.

    Article  CAS  Google Scholar 

  61. Breckenridge, L. J.; Wilson, R. J. A.; Connolly, P.; Curtis, A. S. G.; Dow, J. A. T.; Blackshaw, S. E.; Wilkinson, C. D. W. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording. J. Neurosci. Res. 1995, 42, 266–276.

    Article  CAS  Google Scholar 

  62. Taleat, Z.; Larsson, A.; Ewing, A. G. Anticancer drug tamoxifen affects catecholamine transmitter release and storage from single cells. ACS Chem. Neurosci. 2019, 10, 2060–2069.

    Article  CAS  Google Scholar 

  63. Zhou, J. L.; Zhang, J.; Cao, L. J.; Liu, Y. Y.; Liu, L. Y.; Liu, C. L.; Li, X. C. Ginsenoside Rg1 modulates vesicular dopamine storage and release during exocytosis revealed with single-vesicle electrochemistry. Chem. Commun. 2023, 59, 3087–3090.

    Article  CAS  Google Scholar 

  64. Aref, M.; Ranjbari, E.; Romiani, A.; Ewing, A. G. Intacellular injection of phospholipids directly alters exocytosis and the fraction of chemical release in chromaffin cells as measured by Nanoe electrochemistry. Chem. Sci. 2020, 11, 11869–11876.

    Article  CAS  Google Scholar 

  65. Gu, C. Y.; Ewing, A. G. Simultaneous detection of vesicular content and exocytotic release with two electrodes in and at a single cell. Chem. Sci. 2021, 12, 7393–7400.

    Article  CAS  Google Scholar 

  66. Hu, K. K.; Le Vo, K. L.; Hatamie, A.; Ewing, A. G. Quantifying intracellular single vesicular catecholamine concentration with open carbon nanopipettes to unveil the effect of L-DOPA on vesicular structure. Angew. Chem., Int. Ed. 2022, 61, e202113406.

    Article  CAS  Google Scholar 

  67. Majdi, S.; Larsson, A.; Najafinobar, N.; Borges, R.; Ewing, A. G. Extracellular ATP regulates the vesicular pore opening in chromaffin cells and increases the fraction released during individual exocytosis events. ACS Chem. Neurosci. 2019, 10, 2459–2466.

    Article  CAS  Google Scholar 

  68. Hatamie, A.; Ren, L.; Dou, H. Q.; Gandasi, N. R.; Rorsman, P.; Ewing, A. Nanoscale amperometry reveals that only a fraction of vesicular serotonin content is released during exocytosis from beta cells. Angew. Chem., Int. Ed. 2021, 60, 7593–7596.

    Article  CAS  Google Scholar 

  69. Zhang, X. W.; Oleinick, A.; Jiang, H.; Liao, Q. L.; Qiu, Q. F.; Svir, I.; Liu, Y. L.; Amatore, C.; Huang, W. H. Electrochemical monitoring of ROS/RNS homeostasis within individual phagolysosomes inside single macrophages. Angew. Chem., Int. Ed. 2019, 58, 7753–7756.

    Article  CAS  Google Scholar 

  70. Hu, K. K.; Li, Y.; Rotenberg, S. A.; Amatore, C.; Mirkin, M. V. Electrochemical measurements of reactive oxygen and nitrogen species inside single phagolysosomes of living macrophages. J. Am. Chem. Soc. 2019, 141, 4564–4568.

    Article  CAS  Google Scholar 

  71. Pan, R. R.; Wang, D. C.; Liu, K.; Chen, H. Y.; Jiang, D. C. Electrochemical molecule trap-based sensing of low-abundance enzymes in one living cell. J. Am. Chem. Soc. 2022, 144, 17558–17566.

    Article  CAS  Google Scholar 

  72. Wang, N. N.; Wang, D. N.; Pan, R. R.; Wang, D. C.; Jiang, D. C.; Chen, H. Y. Self-referenced nanopipette for electrochemical analysis of hydrogen peroxide in the nucleus of a single living cell. Anal. Chem. 2021, 95, 10744–10749.

    Article  Google Scholar 

  73. Dunevall, J.; Fathali, H.; Najafinobar, N.; Lovric, J.; Wigström, J.; Cans, A. S.; Ewing, A. G. Characterizing the catecholamine content of single mammalian vesicles by collision-adsorption events at an electrode. J. Am. Chem. Soc. 2015, 157, 4344–4346.

    Article  Google Scholar 

  74. Liu, Y. Y.; Du, J. C.; Wang, M. Y.; Zhang, J.; Liu, C. L.; Li, X. C. Recent progress in quantitatively monitoring vesicular neurotransmitter release and storage with micro/nanoelectrodes. Front. Chem. 2021, 8, 591311.

    Article  Google Scholar 

  75. Li, X. C.; Dunevall, J.; Ewing, A. G. Quantitative chemical measurements of vesicular transmitters with electrochemical cytometry. Acc. Chem. Res. 2016, 49, 2347–2354.

    Article  CAS  Google Scholar 

  76. Zhang, X. W.; Ewing, A. G. Pore-opening dynamics of single nanometer biovesicles at an electrified interface. ACS Nano 2022, 16, 9852–9858.

    Article  CAS  Google Scholar 

  77. Zheng, Y. N.; Nguyen, T. D. K.; Dunevall, J.; Phan, N. T. N.; Ewing, A. G. Dynamic visualization and quantification of single vesicle opening and content by coupling vesicle impact electrochemical cytometry with confocal microscopy. ACS Meas. Sci. Au 2021, 1, 131–138.

    Article  CAS  Google Scholar 

  78. Hu, K. K.; Jia, R.; Hatamie, A.; Le Vo, K. L.; Mirkin, M. V.; Ewing, A. G. Correlating molecule count and release kinetics with vesicular size using open carbon nanopipettes. J. Am. Chem. Soc. 2020, 142, 16910–16914.

    Article  CAS  Google Scholar 

  79. He, X. L.; Ewing, A. G. Anionic species regulate chemical storage in nanometer vesicles and amperometrically detected exocytotic dynamics. J. Am. Chem. Soc. 2022, 144, 4310–4314.

    Article  CAS  Google Scholar 

  80. Hu, K. K.; Relton, E.; Locker, N.; Phan, N. T. N.; Ewing, A. G. Electrochemical measurements reveal reactive oxygen species in stress granules. Angew. Chem., Int. Ed. 2021, 60, 15302–15306.

    Article  CAS  Google Scholar 

  81. He, X. L.; Ewing, A. G. Simultaneous counting of molecules in the halo and dense-core of nanovesicles by regulating dynamics of vesicle opening. Angew. Chem., Int. Ed. 2022, 61, e202116217.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge the funding from Fundamental Research Funds for the Central Universities (No. 20720220014) and the National Natural Science Foundation of China (No. 22204134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keke Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Yang, D., Wang, Y. et al. Micro/nanoelectrode-based electrochemical methodology for single cell and organelle analysis. Nano Res. 17, 196–206 (2024). https://doi.org/10.1007/s12274-023-6210-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6210-0

Keywords

Navigation