Skip to main content
Log in

The connection between meridians and physiological functions: A quantum principle

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the long history of traditional Chinese medicine (TCM), meridians play essential roles as the critical network to regulate the normal physiological functions of the human body. They are regarded to be the channels connecting the internal organs with the body surface and various parts of the body. Although there are many studies and doctrines trying to reveal the nature of meridians for their validation in TCM, the mechanism underlying the meridians remains unclear. Herein, based on our macroscopic quantum state concept of ion channels (i.e., sub-nanometer scale channels), we propose a quantum principle of meridians. The acupoints and organ symptom are in a macroscopic coherence state of the ion channels in meridians. By applying TCM treatments (e.g., TCM massage, acupuncture, moxibustion, and electroacupuncture) on the acupoint, the corresponding organ symptom could be well regulated with help of quantum meridian state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X. N. Chinese Acupuncture and Moxibustion; Foreign Languages Press: Beijing, 2003.

    Google Scholar 

  2. Helms, J. M. Acupuncture Energetics: A Clinical Approach for Physicians. Thieme Publishers: Berkeley, 1995.

    Google Scholar 

  3. Xia, Y. Advanced Acupuncture Research: From Bench to Bedside; Springer: Cham, 2022.

    Book  Google Scholar 

  4. Xue, C. C. L.; Zhang, A. L.; Greenwood, K. M.; Lin, V.; Story, D. F. Traditional Chinese medicine: An update on clinical evidence. J. Altern. Complement. Med. 2010, 16, 301–312.

    Article  Google Scholar 

  5. Zhu, Z. X. The advances and prospect in physiological and biophysical approaches of acupuncture meridian system. Acupunct. Res. 1988, 13, 81–89.

    CAS  Google Scholar 

  6. Wang, G. J.; Ayati, M. H.; Zhang, W. B. Meridian studies in China: A systematic review. J. Acupunct. Meridian Stud. 2010, 3, 1–9.

    Article  Google Scholar 

  7. Yang, M. N.; Han, J. X. Review and analysis on the meridian research of China over the past sixty years. Chin. J. Integr. Med. 2015, 21, 394–400.

    Article  Google Scholar 

  8. Schröder, S.; Liepert, J.; Remppis, A.; Greten, J. H. Acupuncture treatment improves nerve conduction in peripheral neuropathy. Eur. J. Neurol. 2007, 14, 276–281.

    Article  Google Scholar 

  9. Longhurst, J. C. Defining meridians: A modern basis of understanding. J. Acupunct. Meridian Stud. 2010, 3, 67–74

    Article  Google Scholar 

  10. Ding, G. H.; Yang, J.; Chen, E. Y.; Shen, X. Y.; Dang, R. S.; Yao, W.; Cheng, H. S.; Liu, F.; Fei, L. Directional flow of human tissue fluid and meridian. Prog. Nat. Sci. 2001, 11, 811–818.

    Google Scholar 

  11. Bai, Y.; Yuan, L.; Huang, Y.; Wu, J. P.; Wang, J.; Dai, J. X.; Wang, C. L.; Jiang, X. M.; Li, D. F.; Yang, C. et al. Anatomical discovery of meridians and collaterals lead to the new theory of fasciaology. World Sci. Technol. Modern. Trad. Chin. Med. 2010, 12, 20–24.

    Google Scholar 

  12. Wang, C. L.; Wu, J. P.; Wang, J.; Yuan, L. An interpretation on the essence of meridians and acupuncture mechanism from fasciaology view. Chin. J. Basic Med. Tradit. Chin. Med. 2008, 14, 312–314.

    CAS  Google Scholar 

  13. Zhang, C. L. Relationship of electron-magnetic standing wave with acupuncture meridian. Acupunct. Res. 1995, 20, 52–62.

    Google Scholar 

  14. Lin, X. Z.; Xiao, Y. Mechanism underlying the formation of the propagated sensation along meridians (PSM) in Human body. J. Yunnan Coll. Tradit. Chin, Med. 1995, 18, 32–38.

    Google Scholar 

  15. Brizhik, L.; Chiappini, E.; Stefanini, P.; Vitiello, G. Modeling meridians within the quantum field theory. J. Acupunt. Meridian Stud. 2019, 12, 29–36.

    Article  Google Scholar 

  16. Liu, S. B.; Wang, Z. F.; Su, Y. S.; Qi, L.; Yang, W.; Fu, M. Z.; Jing, X. H.; Wang, Y. Q.; Ma, Q. F. A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis. Nature 2021, 598, 641–645.

    Article  CAS  Google Scholar 

  17. Guo, Y.; Chen, S. B.; Zhang, C. X.; Wang, X. Y.; Miao, W. F.; Shi, L. P.; Zhang, G. Z. Specific distribution of Ca2+ concentration in acupoints of healthy human bodies. Shanghai J. Acupunct. Moxibust. 2002, 21, 37–38.

    Google Scholar 

  18. Wen, L. P.; Zhang, X. Q.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China Mater. 2018, 61, 1027–1032.

    Article  CAS  Google Scholar 

  19. Song, B.; Jiang, L. The macroscopic quantum state of ion channels: A carrier of neural information. Sci. China Mater. 2021, 64, 2572–2579.

    Article  CAS  Google Scholar 

  20. Deadman, P.; Al-Khafaji, M.; Baker, K. A Manual of Acupuncture; Journal of Chinese Medicine Publications: Hove, 1998.

    Google Scholar 

  21. Lin, Y. C.; Hsu, E. S. Z. Acupuncture for Pain Management; Springer: New York, 2014.

    Book  Google Scholar 

  22. Guo, X. Q.; Jia, R. J.; Cao, Q. Y.; Guo, Z. D.; Li, P. Inhibitory effect of somatic nerve afferent impulses on the extrasystole induced by hypothalamic stimulation. Acta Physiol. Sin. 1981, 33, 343–350.

    Google Scholar 

  23. Ozaki, Y. Infrared spectroscopy-mid-infrared, near-infrared, and far-infrared/terahertz spectroscopy. Anal. Sci. 2021, 37, 1193–1212.

    Article  CAS  Google Scholar 

  24. An, N.; Cao, F. Z.; Li, W.; Wang, W. L.; Xu, W. N.; Wang, C. H.; Xiang, M.; Gao, Y.; Sui, B. B.; Liang, A. M. et al. Imaging somatosensory cortex responses measured by OPM-MEG: Variational free energy-based spatial smoothing estimation approach. iScience 2022, 25, 103752.

    Article  Google Scholar 

  25. Li, P.; Cheng, L.; Liu, D. M.; Painovich, J.; Vinjanury, S.; Tjen-Alooi, S.; Longhurst, J. Long-lasting inhibitory effect of electroacupuncture in hypertensive patients ő role of catecholamine, renin, and angiotension (1140.3). FASEB J. 2014, 28, 1140.3.

    Google Scholar 

  26. Dietzel, J.; Eck, T.; Usichenko, T. Treating therapy-resistant headache after aneurysmal subarachnoid hemorrhage with acupuncture. Neurocrit. Care 2019, 31, 434–438.

    Article  Google Scholar 

  27. Liu, Y. W.; Kuo, C. W.; Chang, T. C.; Hung, Y. C.; Tan, Y. F.; Wu, C. C.; Lin, C. H.; Chen, W. C.; Hu, W. L.; Tsai, T. M. Analysis of meridian flow direction by electrical stimulation method. Nanoscale Res. Lett. 2022, 17, 64.

    Article  Google Scholar 

  28. David Lytle, C.; Thomas, B. M.; Gordon, E. A.; Krauthamer, V. Electrostimulators for acupuncture: Safety issues. J. Altern. Complement. Med. 2000, 6, 37–44.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21988102, 22122207, T224100002, and 62101017), the National Key R&D Program of China (No. 2021YFA1200404), the Innovation Program for Quantum Science and Technology (No. 2021ZD0300500), and the Development and Application of Ultra-Weak Magnetic Measurement Technology based on Atomic Magnetometer (No. 2022-189-181).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Han, Bo Song or Lei Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, XY., Xiang, M., Fang, J. et al. The connection between meridians and physiological functions: A quantum principle. Nano Res. 16, 12817–12820 (2023). https://doi.org/10.1007/s12274-023-6203-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6203-z

Keywords

Navigation