Skip to main content
Log in

Finger-actuated wireless-charging wearable multifunctional sweat-sensing system for levodopa and vitamin C

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Efficient portable wearable sweat sensors allow the long-term monitoring of changes in the status of biomarkers in sweat, which can be useful in diagnosis, medication, and nutritional assessment. In this study, we designed and tested a wireless, battery-free, flexible, self-pumping sweat-sensing system that simultaneously tracks levodopa and vitamin C levels in human sweat and detects body temperature. The system includes a microfluidic chip with a self-driven pump and anti-reflux valve, a flexible wireless circuit board, and a purpose-designed smartphone app. The microfluidic chip is used for the efficient collection of sweat and the drainage of excess sweat. The dual electrochemical sensing electrodes in the chip are modified with functional materials and appropriate enzymatic reagents, achieving excellent selectivity and stability. The sensitivities of the levodopa sensor and the vitamin C sensor are 0.0073 and 0.0018 µA·µM−1, respectively, and the detection correlation coefficients of both exceed 0.99. Both sensors have a wide linear detection range of 0–100 and 0–1000 µM, respectively, and low detection limits of 0.28 and 17.9 µM, respectively. The flexible wireless circuit board is equipped with the functions of wireless charging, electrical signal capture and processing, and wireless transmission. The data recorded from each sensor are displayed on a smartphone via a self-developed app. A series of experimental results confirmed the reliability of the sweat-sensing system in noninvasively monitoring important biomarkers in the human body and its potential utility in the comprehensive assessment of biological health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao, Y. T.; Qiao, L. J.; Chen, Z. M.; Liu, B. X.; Gao, L.; Zhang, L. Wearable sensor for continuous sweat biomarker monitoring. Chemosensors 2022, 10, 273.

    Article  CAS  Google Scholar 

  2. Li, C. Y.; Xu, Z. J.; Xu, S. X.; Wang, T. Y.; Zhou, S. Y.; Sun, Z. R.; Wang, Z. L.; Tang, W. Miniaturized retractable thin-film sensor for wearable multifunctional respiratory monitoring. Nano Res. 2023, 16, 11846–11854.

    Article  CAS  ADS  Google Scholar 

  3. Cheng, Y. M.; Wang, K.; Xu, H.; Li, T. G.; Jin, Q. H.; Cui, D. X. Recent developments in sensors for wearable device applications. Anal. Bioanal Chem. 2021, 413, 6037–6057.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, W. L. H.; Guan, H. Y.; Zhong, T. Y.; Zhao, T. M.; Xing, L. L.; Xue, X. Y. Wearable battery-free perspiration analyzing sites based on sweat flowing on ZnO nanoarrays. Nano-Micro Lett. 2020, 12, 105.

    Article  ADS  Google Scholar 

  5. Chang, T. R.; Li, H.; Zhang, N. R.; Jiang, X. R.; Yu, X. G.; Yang, Q. D.; Jin, Z. Y.; Meng, H.; Chang, L. Q. Highly integrated watch for noninvasive continual glucose monitoring. Microsyst. Nanoeng. 2022, 8, 25.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Dautta, M.; Ayala-Cardona, L. F.; Davis, N.; Aggarwal, A.; Park, J.; Wang, S.; Gillan, L.; Jansson, E.; Hietala, M.; Ko, H. et al. Tape-free, digital wearable band for exercise sweat rate monitoring. Adv. Mater. Technol. 2023, 8, 2201187.

    Article  CAS  Google Scholar 

  7. Dong, J. C.; Peng, Y. D.; Zhang, Y. T.; Chai, Y. J.; Long, J. Y.; Zhang, Y. X.; Zhao, Y.; Huang, Y. P.; Liu, T. X. Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 2023, 15, 181.

    Article  ADS  Google Scholar 

  8. Ning, Q. H.; Feng, S. Q.; Cheng, Y. M.; Li, T. G.; Cui, D. X.; Wang, K. Point-of- care biochemical assays using electrochemical technologies: Approaches, applications, and opportunities. Microchim. Acta 2022, 189, 310.

    Article  CAS  Google Scholar 

  9. He, X. C.; Yang, S. J.; Pei, Q. B.; Song, Y. C.; Liu, C. H.; Xu, T. L.; Zhang, X. J. Integrated smart Janus textile bands for self-pumping sweat sampling and analysis. ACS Sens. 2020, 5, 1548–1554.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, S. Z.; Jiang, H. Q.; Wang, S.; Yuan, J.; Yi, W. D.; Wang, L. F.; Liu, X. W.; Liu, F.; Cheng, G. J. Epidermal patch with biomimetic multistructural microfluidic channels for timeliness monitoring of sweat. ACS Appl. Mater. Interfaces 2023, 15, 469–478.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Wang, L. R.; Wang, J.; Fan, C.; Xu, T. L.; Zhang, X. J. Skin-like hydrogel-elastomer based electrochemical device for comfortable wearable biofluid monitoring. Chem. Eng. J. 2023, 455, 140609.

    Article  CAS  Google Scholar 

  12. Min, J. H.; Tu, J. B.; Xu, C. H.; Lukas, H.; Shin, S.; Yang, Y.; Solomon, S. A.; Mukasa, D.; Gao, W. R. Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 2023, 123, 5049–5138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jin, X. F.; Li, G. H.; Xu, T. L.; Su, L.; Yan, D.; Zhang, X. J. Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosens. Bioelectron. 2022, 196, 113760.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, P. F.; Wei, G. F.; Liu, A.; Huo, F. W.; Zhang, Z. N. A review of sampling, energy supply and intelligent monitoring for long-term sweat sensors. npj Flex. Electron. 2022, 6, 33.

    Article  Google Scholar 

  15. Raymundo-Pereira, P. A.; Gomes, N. O.; Machado, S. A. S.; Oliveira, O. O. Jr. Wearable glove-embedded sensors for therapeutic drug monitoring in sweat for personalized medicine. Chem. Eng. J. 2022, 435, 135047.

    Article  CAS  Google Scholar 

  16. Wang, M. Q.; Yang, Y. R.; Min, J. H.; Song, Y.; Tu, J. B.; Mukasa, D.; Ye, C.; Xu, C. H.; Heflin, N.; McCune, J. S. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saha, T.; Del Caño, R.; La De Paz, E.; Sandhu, S. S.; Wang, J. Access and management of sweat for non-invasive biomarker monitoring: A comprehensive review. Small, in press, https://doi.org/10.1002/smll.202206064.

  18. Roycroft, M.; Abdelhafiz, A. H.; Rose, J. Patient-controlled variable dosing of levodopa for Parkinson’s disease. Age Ageing 2020, 49, 305–306.

    Article  PubMed  Google Scholar 

  19. Matsuyama, H.; Matsuura, K.; Ishikawa, H.; Hirata, Y.; Kato, N.; Niwa, A.; Narita, Y.; Tomimoto, H. Correlation between serum zinc levels and levodopa in Parkinson’s disease. Nutrients 2021, 13, 4114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, C.; Zou, C. P.; Li, L.; Yu, H. D.; Zhu, J. X.; Liu, J. H.; Huang, W. Blue and green emission-transformed fluorescent copolymer: Specific detection of levodopa of anti-Parkinson drug in human serum. Talanta 2020, 214, 120817.

    Article  CAS  PubMed  Google Scholar 

  21. Xiao, J. Y.; Fan, C.; Xu, T. L.; Su, L.; Zhang, X. J. An electrochemical wearable sensor for levodopa quantification in sweat based on a metal-organic framework/graphene oxide composite with integrated enzymes. Sens. Actuat. B Chem. 2022, 359, 131586.

    Article  CAS  Google Scholar 

  22. Wang, J. W.; Niu, J. A.; Sha, W.; Dai, X. H.; Huang, T. C.; Hua, Q. L.; Long, Y.; Xiao, J. F.; Hu, W. G. Flexible high-resolution microLED display device with integrations of transparent, conductive, and highly elastic hydrogel. Nano Res. 2023, 16, 11893–11899.

    Article  CAS  ADS  Google Scholar 

  23. Glasco, D. L.; Sheelam, A.; Ho, N. H. B.; Bell, J. G. Smartphone-based detection of levodopa in human sweat using 3D printed sensors. Anal. Chim. Acta 2023, 1273, 341546.

    Article  CAS  PubMed  Google Scholar 

  24. Sempionatto, J. R.; Montiel, V. R. V.; Vargas, E.; Teymourian, H.; Wang, J. Wearable and mobile sensors for personalized nutrition. ACS Sens. 2021, 6, 1745–1760.

    Article  CAS  PubMed  Google Scholar 

  25. Del Cano, R.; Saha, T.; Moonla, C.; De La Paz, E.; Wang, J. S. Ketone bodies detection: Wearable and mobile sensors for personalized medicine and nutrition. TrAC Trends Anal. Chem. 2023, 159, 116938.

    Article  CAS  Google Scholar 

  26. Kietzmann, T. Vitamin C: From nutrition to oxygen sensing and epigenetics. Redox Biol. 2023, 63, 102753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bechara, N.; Flood, V. M.; Gunton, J. E. A systematic review on the role of Vitamin C in tissue healing. Antioxidants (Basel) 2022, 11, 1605.

    Article  CAS  PubMed  Google Scholar 

  28. Sempionatto, J. R.; Khorshed, A. A.; Ahmed, A.; De Loyola e Silva, A. N.; Barfidokht, A.; Yin, L.; Goud, K. Y.; Mohamed, M. A.; Bailey, E.; May, J. et al. Epidermal enzymatic biosensors for sweat Vitamin C: Toward personalized nutrition. ACS Sens. 2020, 5, 1804–1813.

    Article  CAS  PubMed  Google Scholar 

  29. Yang, X.; Yi, J. Q.; Wang, T.; Feng, Y. A.; Wang, J. W.; Yu, J.; Zhang, F. L.; Jiang, Z.; Lv, Z. S.; Li, H. C. et al. Wet- adhesive on-skin sensors based on metal-organic frameworks for wireless monitoring of metabolites in sweat. Adv. Mater. 2022, 34, 2201768.

    Article  CAS  Google Scholar 

  30. Lin, Y. J.; Bariya M.; Nyein, H. Y. Y.; Kivimaki, L.; Uusitalo, S.; Jansson, E.; Ji, W. B.; Yuan, Z.; Happonen, T.; Liedert, C. et al. Porous enzymatic membrane for nanotextured glucose sweat sensors with high stability toward reliable noninvasive health monitoring. Adv. Funct. Mater. 2019, 29, 1902521.

    Article  Google Scholar 

  31. Zhao, J. Q.; Nyein, H. Y. Y.; Hou, L.; Lin, Y. J.; Bariya, M.; Ahn, C. H.; Ji, W. B.; Fan, Z. Y.; Javey, A. A wearable nutrition tracker. Adv. Mater. 2021, 33, 2006444.

    Article  CAS  Google Scholar 

  32. Yan, T. Y.; Zhang, G. Y.; Yu, K.; Chai, H. N.; Tian, M. W.; Qu, L. J.; Dong, H. F.; Zhang, X. J. Smartphone light-driven zinc porphyrinic MOF nanosheets-based enzyme-free wearable photoelectrochemical sensor for continuous sweat vitamin C detection. Chem. Eng. J. 2023, 455, 140779.

    Article  CAS  Google Scholar 

  33. Xiao, J. Y.; Luo, Y.; Su, L.; Lu, J. F.; Han, W.; Xu, T. L.; Zhang, X. J. Hydrophilic metal-organic frameworks integrated uricase for wearable detection of sweat uric acid. Anal. Chim. Acta 2022, 1208, 339843.

    Article  CAS  PubMed  Google Scholar 

  34. Zha, X.; Yang, W. Y.; Shi, L. W.; Li, Y.; Zeng, Q.; Xu, J. H.; Yang, Y. J. Morphology control strategy of bimetallic MOF nanosheets for upgrading the sensitivity of noninvasive glucose detection. ACS Appl. Mater. Interfaces 2022, 14, 37843–37852.

    Article  CAS  PubMed  Google Scholar 

  35. Maleki, A.; Shahbazi, M. A.; Alinezhad, V.; Santos, H. A. The progress and prospect of zeolitic imidazolate frameworks in cancer therapy, antibacterial activity, and biomineralization. Adv. Healthc. Mater. 2020, 9, e2000248.

    Article  PubMed  Google Scholar 

  36. Bai, J.; Peng, C. J.; Guo, L. P.; Zhou, M. Metal-organic framework-integrated enzymes as bioreactor for enhanced therapy against solid tumor via a cascade catalytic reaction. ACS Biomater. Sci. Eng. 2019, 5, 6207–6215.

    Article  CAS  PubMed  Google Scholar 

  37. Greyling, C. F.; Ganguly, A.; Sardesai, A. U.; Churcher, N. K. M.; Lin, K. C.; Muthukumar, S.; Prasad, S. Passive sweat wearable: A new paradigm in the wearable landscape toward enabling “detect to treat” oppurtunisies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., in press, https://doi.org/10.1002/wnan.1912.

  38. Zhang, Y. W.; Liao, J. J.; Li, Z. H.; Hu, M. X.; Bian, C.; Lin, S. W. All fabric and flexible wearable sensors for simultaneous sweat metabolite detection and high-efficiency collection. Talanta 2023, 260, 124610.

    Article  CAS  PubMed  Google Scholar 

  39. Lin, P. H.; Sheu, S. C.; Chen, C. W.; Huang, S. C.; Li, B. R. Wearable hydrogel patch with noninvasive, electrochemical glucose sensor for natural sweat detection. Talanta 2022, 241, 123187.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, J.; Wang, L. R.; Li, G. H.; Yan, D.; Liu, C. H.; Xu, T. L.; Zhang, X. J. Ultra- small wearable flexible biosensor for continuous sweat analysis. ACS Sens. 2022, 7, 3102–3107.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, Q. Y.; Liu, Y.; Gu, K.; Yao, J. R.; Shao, Z. Z.; Chen, X. Silk-based electrochemical sensor for the detection of glucose in sweat. Biomacromolecules 2022, 23, 3928–3935.

    Article  CAS  PubMed  Google Scholar 

  42. Wei, J. W.; Zhang, X. L.; Mugo, S. M.; Zhang, Q. A portable sweat sensor based on carbon quantum dots for multiplex detection of cardiovascular health biomarkers. Anal. Chem. 2022, 94, 12772–12780.

    Article  CAS  PubMed  Google Scholar 

  43. Yeung, K. K.; Li, J. W.; Huang, T.; Hosseini, I. I.; Al Mahdi, R.; Alam, M. M.; Sun, H. L.; Mahshid, S.; Yang, J.; Ye, T. T. et al. Utilizing gradient porous graphene substrate as the solid-contact layer to enhance wearable electrochemical sweat sensor sensitivity. Nano Lett. 2022, 22, 6647–6654.

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Yang, L.; Wang, H.; Abdullah, A. M.; Meng, C. Z.; Chen, X.; Feng, A. Q.; Cheng, H. Y. Direct laser writing of the porous graphene foam for multiplexed electrochemical sweat sensors. ACS Appl. Mater. Interfaces 2023, 15, 34332–34342.

    Article  CAS  PubMed  Google Scholar 

  45. Xu, X. S.; He, N. Y. Application of adaptive pressure-driven microfluidic chip in thyroid function measurement. Chin. Chem. Lett. 2021, 32, 1747–1750.

    Article  CAS  Google Scholar 

  46. Cheng, Y. M.; Feng, S. Q.; Ning, Q. H.; Li, T. A.; Xu, H.; Sun, Q. W.; Cui, D. X.; Wang, K. Dual-signal readout paper-based wearable biosensor with a 3D origami structure for multiplexed analyte detection in sweat. Microsyst. Nanoeng. 2023, 9, 36.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Li, Q. F.; Chen, X.; Wang, H.; Liu, M.; Peng, H. L. Pt/MXene-based flexible wearable non-enzymatic electrochemical sensor for continuous glucose detection in sweat. ACS Appl. Mater. Interfaces. 2023, 15, 13290–13298.

    Article  CAS  PubMed  Google Scholar 

  48. Yang, M. P.; Sun, N.; Lai, X. C.; Wu, J. M.; Wu, L. F.; Zhao, X. Q.; Feng, L. H. Paper- based sandwich-structured wearable sensor with sebum filtering for continuous detection of sweat pH. ACS Sens. 2023, 8, 176–186.

    Article  CAS  PubMed  Google Scholar 

  49. Huang, L.; Su, E. B.; Liu, Y.; He, N. Y.; Deng, Y.; Jin, L.; Chen, Z.; Li, S. A microfluidic device for accurate detection of hs-cTnI. Chin. Chem Lett. 2021, 32, 1555–1558.

    Article  CAS  Google Scholar 

  50. Zhang, Y. X.; Chen, Y.; Huang, J. L.; Liu, Y. C. Y.; Peng, J. F.; Chen, S. D.; Song, K.; Ouyang, X. P.; Cheng, H. Y.; Wang, X. F. Skin-interfaced microfluidic devices with one-opening chambers and hydrophobic valves for sweat collection and analysis. Lab Chip 2020, 20, 2635–2645.

    Article  CAS  PubMed  Google Scholar 

  51. Xiao, J. Y.; Liu, Y.; Su, L.; Zhao, D.; Zhao, L.; Zhang, X. J. Microfluidic chip-based wearable colorimetric sensor for simple and facile detection of sweat glucose. Anal. Chem. 2019, 91, 14803–14807.

    Article  CAS  PubMed  Google Scholar 

  52. Zhao, P. C.; Wang, H. B.; Wang, Y. Z.; Zhao, W.; Han, M. D.; Zhang, H. X. A time sequential microfluid sensor with Tesla valve channels. Nano Res. 2023, 16, 11667–11673.

    Article  ADS  Google Scholar 

  53. Shi, H. H.; Cao, Y.; Zeng, Y. N.; Zhou, Y. N.; Wen, W. H.; Zhang, C. X.; Zhao, Y. L.; Chen, Z. Wearable Tesla valve-based sweat collection device for sweat colorimetric analysis. Talanta 2022, 240, 123208.

    Article  CAS  PubMed  Google Scholar 

  54. Mishra, N.; Garland, N. T.; Hewett, K. A.; Shamsi, M.; Dickey, M. D.; Bandodkar, A. J. A soft wearable microfluidic patch with finger-actuated pumps and valves for on-demand, longitudinal, and multianalyte sweat sensing. ACS Sens. 2022, 7, 3169–3180.

    Article  CAS  PubMed  Google Scholar 

  55. Bariya, M.; Davis, N.; Gillan, L.; Jansson, E.; Kokkonen, A.; McCaffrey, C.; Hiltunen, J.; Javey, A. Resettable microfluidics for broad-range and prolonged sweat rate sensing. ACS Sens. 2022, 7, 1156–1164.

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Y. C. Y.; Li, X. F.; Yang, H. L.; Zhang, P.; Wang, P. H.; Sun, Y.; Yang, F. Z.; Liu, W. Y.; Li, Y. J.; Tian, Y. et al. Skin-interfaced superhydrophobic insensible sweat sensors for evaluating body thermoregulation and skin barrier functions. ACS Nano 2023, 17, 5588–5599.

    Article  CAS  PubMed  Google Scholar 

  57. Alam, M. S.; Kim, J. K.; Choi, J. Multifunctional wearable system for mapping body temperature and analyzing sweat. ACS Sens. 2023, 8, 1980–1988.

    Article  CAS  PubMed  Google Scholar 

  58. Hou, Y. F.; Wang, K.; Xiao, K.; Qin, W. J.; Lu, W. T.; Tao, W.; Cui, D. X. Smartphone-based dual-modality imaging system for quantitative detection of color or fluorescent lateral flow immunochromatographic strips. Nanoscale Res. Lett. 2017, 12, 291.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  59. Wang, K.; Yang, J. C.; Xu, H.; Cao, B.; Qin, Q.; Liao, X. M.; Wo, Y.; Jin, Q. H.; Cui, D. X. Smartphone- imaged multilayered paper-based analytical device for colorimetric analysis of carcinoembryonic antigen. Anal. Bioanal. Chem. 2020, 412, 2517–2528.

    Article  CAS  PubMed  Google Scholar 

  60. Ning, Q. H.; Zheng, W.; Xu, H.; Zhu, A.; Li, T. G.; Cheng, Y. M.; Feng, S. Q.; Wang, L.; Cui, D. X.; Wang, K. Rapid segmentation and sensitive analysis of CRP with paper-based microfluidic device using machine learning. Anal. Bioanal. Chem. 2022, 414, 3959–3970.

    Article  CAS  PubMed  Google Scholar 

  61. Liu, S.; He, X. L.; Zhang, T.; Zhao, K. X.; Xiao, C. H.; Tong, Z. R.; Jin, L.; He, N. Y.; Deng, Y.; Li, S. et al. Highly sensitive smartphone-based detection of Listeria monocytogenes using SYTO9. Chin. Chem. Lett. 2022, 33, 1933–1935.

    Article  Google Scholar 

  62. Kim, E.; Umar, A.; Ameen, S.; Kumar, R.; Ibrahim, A. A.; Alhamami, M. A. M.; Akhtar, M. S.; Baskoutas, S. Synthesis and characterizations of ZIF-8/GO and ZIF-8/rGO composites for highly sensitive detection of Cu2+ ions. Surfaces and Interfaces. 2023, 41, 103163.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32171373), the Projects of International Cooperation and Exchanges NSFC (No. 82020108017), the Natural Science Foundation of Shanghai (No. 23ZR1414500), and the Medical Engineering Cross Project of SJTU (No. YG2021QN141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Q., Feng, S., Sun, Q. et al. Finger-actuated wireless-charging wearable multifunctional sweat-sensing system for levodopa and vitamin C. Nano Res. 17, 3096–3106 (2024). https://doi.org/10.1007/s12274-023-6197-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6197-6

Keywords

Navigation