Skip to main content
Log in

Controlled growth of vertically stacked In2Se3/WSe2 heterostructures for ultrahigh responsivity photodetector

  • Communication
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenides (TMDCs) are promising candidates for future optoelectronic devices accounting for their high carrier mobility and excellent quantum efficiency. However, the limited light absorption efficiency in atomically thin layers significantly hinders photocarrier generation, thereby impairing the optoelectronic performance and hindering practical applications. Herein, we successfully synthesized In2Se3/WSe2 heterostructures through a typical two-step chemical vapor deposition (CVD) method. The In2Se3 nanosheet with strong light absorption capability, serving as the light absorption layer, was integrated with the monolayer WSe2, enhancing the photosensitivity of WSe2 significantly. Upon laser irradiation with a wavelength of 520 nm, the In2Se3/WSe2 heterostructure device shows an ultrahigh photoresponsivity with a value as high as 2333.5 A/W and a remarkable detectivity reaching up to 6.7 × 1012 Jones, which is the highest among almost the reported TMDCs-based heterostructures grown via CVD even some fabricated by mechanical exfoliation (ME). Combing the advantages of CVD method such as large scale, high yield, and clean interface, the In2Se3/WSe2 heterostructures would provide a novel path for future high-performance optoelectronic device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Chen, Y.; Jiang, Y.; Yi, C.; Liu, H. W.; Chen, S. L.; Sun, X. X.; Ma, C.; Li, D.; He, C. L.; Luo, Z. Y. et al. Efficient control of emission and carrier polarity in WS2 monolayer by indium doping. Sci. China Mater. 2021, 64, 1449–1456.

    Article  CAS  Google Scholar 

  4. Zheng, B. Y.; Zheng, W. H.; Jiang, Y.; Chen, S. L.; Li, D.; Ma, C.; Wang, X. X.; Huang, W.; Zhang, X. H.; Liu, H. W. et al. WO3−WS2 vertical bilayer heterostructures with high photoluminescence quantum yield. J. Am. Chem. Soc. 2019, 141, 11754–11758.

    Article  CAS  PubMed  Google Scholar 

  5. Salehzadeh, O.; Tran, N. H.; Liu, X.; Shih, I.; Mi, Z. Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS2 light-emitting devices. Nano Lett. 2014, 14, 4125–4130.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Kim, H.; Ahn, G. H.; Cho, J.; Amani, M.; Mastandrea, J. P.; Groschner, C. K.; Lien, D. H.; Zhao, Y. B.; Ager III, J. W.; Scott, M. C. et al. Synthetic WSe2 monolayers with high photoluminescence quantum yield. Sci. Adv. 2019, 5, eaau4728.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Zhao, J. H.; Wang, A. H.; Green, M. A.; Ferrazza, F. 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 1998, 73, 1991–1993.

    Article  ADS  CAS  Google Scholar 

  8. Wang, Y. M.; Sohier, T.; Watanabe, K.; Taniguchi, T.; Verstraete, M. J.; Tutuc, E. Electron mobility in monolayer WS2 encapsulated in hexagonal boron-nitride. Appl. Phys. Lett. 2021, 118, 102105.

    Article  ADS  CAS  Google Scholar 

  9. Chetia, A.; Bera, J.; Betal, A.; Sahu, S. A brief review on photodetector performance based on zero dimensional and two dimensional materials and their hybrid structures. Mater. Today Commun. 2022, 30, 103224.

    Article  CAS  Google Scholar 

  10. Fang, F. E.; Wan, Y.; Li, H. N.; Fang, S. F.; Huang, F.; Zhou, B.; Jiang, K.; Tung, V.; Li, L. J.; Shi, Y. M. Two-dimensional Cs2AgBiBr6/WS2 heterostructure-based photodetector with boosted detectivity via interfacial engineering. ACS Nano 2022, 16, 3985–3993.

    Article  CAS  PubMed  Google Scholar 

  11. Song, X. F.; Liu, X. H.; Yu, D. J.; Huo, C. X.; Ji, J. P.; Li, X. M.; Zhang, S. L.; Zou, Y. S.; Zhu, G. Y.; Wang, Y. J. et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces 2018, 10, 2801–2809.

    Article  CAS  PubMed  Google Scholar 

  12. Lu, J. P.; Carvalho, A.; Liu, H. W.; Lim, S. X.; Castro Neto, A. H.; Sow, C. H. Hybrid bilayer WSe2−CH3NH3PbI3 organolead halide perovskite as a high-performance photodetector. Angew. Chem. 2016, 128, 12124–12128.

    Article  ADS  Google Scholar 

  13. Hu, C.; Dong, D. D.; Yang, X. K.; Qiao, K. K.; Yang, D.; Deng, H.; Yuan, S. J.; Khan, J.; Lan, Y.; Song, H. S. et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors. Adv. Funct. Mater. 2017, 27, 1603605.

    Article  Google Scholar 

  14. Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F. H. L.; Konstantatos, G. Hybrid 2D-0D MoS2−PbS quantum dot photodetectors. Adv. Mater. 2015, 27, 176–180.

    Article  CAS  PubMed  Google Scholar 

  15. Tang, L.; Teng, C. J.; Luo, Y. T.; Khan, U.; Pan, H. Y.; Cai, Z. Y.; Zhao, Y.; Liu, B. L.; Cheng, H. M. Confined van der Waals epitaxial growth of two-dimensional large single-crystal In2Se3 for flexible broadband photodetectors. Research 2019, 2019, 2763704.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin, M.; Wu, D.; Zhou, Y.; Huang, W.; Jiang, W.; Zheng, W. S.; Zhao, S. L.; Jin, C. H.; Guo, Y. F.; Peng, H. L. et al. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. J. Am. Chem. Soc. 2013, 135, 13274–13277.

    Article  CAS  PubMed  Google Scholar 

  17. Choi, M. S.; Cheong, B. K.; Ra, C. H.; Lee, S.; Bae, J. H.; Lee, S.; Lee, G. D.; Yang, C. W.; Hone, J.; Yoo, W. J. Electrically driven reversible phase changes in layered In2Se3 crystalline film. Adv. Mater. 2017, 29, 1703568.

    Article  Google Scholar 

  18. Feng, W.; Gao, F.; Hu, Y. X.; Dai, M. J.; Li, H.; Wang, L. F.; Hu, P. A. High-performance and flexible photodetectors based on chemical vapor deposition grown two-dimensional In2Se3 nanosheets. Nanotechnology 2018, 29, 445205.

    Article  ADS  PubMed  Google Scholar 

  19. Liu, K. Q.; Zhang, T.; Dang, B. J.; Bao, L.; Xu, L. Y.; Cheng, C. D.; Yang, Z.; Huang, R.; Yang, Y. C. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 2022, 5, 761–773.

    Article  CAS  Google Scholar 

  20. Han, W.; Zheng, X. D.; Yang, K.; Tsang, C. S.; Zheng, F. Y.; Wong, L. W.; Lai, K. H.; Yang, T. F.; Wei, Q.; Li, M. J. et al. Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction. Nat. Nanotechnol. 2023, 18, 55–63.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Ding, W. J.; Zhu, J. B.; Wang, Z.; Gao, Y. F.; Xiao, D.; Gu, Y.; Zhang, Z. Y.; Zhu, W. G. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2−VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, S. Y.; Liu, L.; Gan, L. R.; Chen, H. W.; Hou, X.; Ding, Y.; Ma, S. L.; Zhang, D. W.; Zhou, P. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun. 2021, 12, 53.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tao, X.; Mafi, E.; Gu, Y. Ultrafast carrier dynamics in single-crystal In2Se3 thin layers. Appl. Phys. Lett. 2013, 103, 193115.

    Article  ADS  Google Scholar 

  24. Liu, L. X.; Dong, J. Y.; Huang, J. Q.; Nie, A. M.; Zhai, K.; Xiang, J. Y.; Wang, B. C.; Wen, F. S.; Mu, C. P.; Zhao, Z. S. et al. Atomically resolving polymorphs and crystal structures of In2Se3. Chem. Mater. 2019, 31, 10143–10149.

    Article  CAS  Google Scholar 

  25. Yan, W. J.; Akimov, A. V.; Page, J. A.; Greenaway, M. T.; Balanov, A. G.; Patanè, A.; Kent, A. J. Nondestructive picosecond ultrasonic probing of intralayer and van der Waals interlayer bonding in α-and β-In2Se3. Adv. Funct. Mater. 2021, 31, 2106206.

    Article  CAS  Google Scholar 

  26. Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

    Article  CAS  PubMed  Google Scholar 

  27. Liu, H. W.; Zhu, X. L.; Sun, X. X.; Zhu, C. G.; Huang, W.; Zhang, X. H.; Zheng, B. Y.; Zou, Z. X.; Luo, Z. Y.; Wang, X. et al. Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3 p-n heterojunctions. ACS Nano 2019, 13, 13573–13580.

    Article  CAS  PubMed  Google Scholar 

  28. Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. 2017, 8, 1906.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Yu, X. Y.; Guijarro, N.; Johnson, M.; Sivula, K. Defect mitigation of solution-processed 2D WSe2 nanoflakes for solar-to-hydrogen conversion. Nano Lett. 2018, 18, 215–222.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Botcha, V. D.; Hong, Y. H.; Huang, Z. H.; Li, Z. W.; Liu, Q.; Wu, J.; Lu, Y. M.; Liu, X. K. Growth and thermal properties of various In2Se3 nanostructures prepared by single step PVD technique. J. Alloys Compd. 2019, 773, 698–705.

    Article  CAS  Google Scholar 

  31. Zou, Z. X.; Li, D.; Liang, J. W.; Zhang, X. H.; Liu, H. W.; Zhu, C. G.; Yang, X.; Li, L. H.; Zheng, B. Y.; Sun, X. X. et al. Epitaxial synthesis of ultrathin β-In2Se3/MoS2 heterostructures with high visible/near-infrared photoresponse. Nanoscale 2020, 12, 6480–6488.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, R.; Drysdale, D.; Koutsos, V.; Cheung, R. Controlled layer thinning and p-type doping of WSe2 by vapor XeF2. Adv. Funct. Mater. 2017, 27, 1702455.

    Article  Google Scholar 

  33. Tao, L.; Meng, F. C.; Zhao, S. D.; Song, Y. L.; Yu, J. X.; Wang, X. J.; Liu, Z. G.; Wang, Y.; Li, B. S.; Wang, Y. et al. Experimental and theoretical evidence for the ferromagnetic edge in WSe2 nanosheets. Nanoscale 2017, 9, 4898–4906.

    Article  CAS  PubMed  Google Scholar 

  34. Kang, W. T.; Lee, I. M.; Yun, S. J.; Song, Y. I.; Kim, K.; Kim, D. H.; Shin, Y. S.; Lee, K.; Heo, J.; Kim, Y. M. et al. Direct growth of doping controlled monolayer WSe2 by selenium-phosphorus substitution. Nanoscale 2018, 10, 11397–11402.

    Article  CAS  PubMed  Google Scholar 

  35. Li, Z.; Jin, D.; Wang, Z. H. Synthesis of step-scheme In2Se3/CdSe nanocomposites photocatalysts for hydrogen production. Compos. Commun. 2021, 24, 100618.

    Article  Google Scholar 

  36. Rashid, R.; Ling, F. C. C.; Wang, S. P.; Xiao, K.; Cui, X. D.; Chan, T. H.; Ong, H. C.; Azeem, W.; Younas, M. Shape-control growth of 2D-In2Se3 with out-of-plane ferroelectricity by chemical vapor deposition. Nanoscale 2020, 12, 20189–20201.

    Article  CAS  PubMed  Google Scholar 

  37. You, Y. M.; Zhang, X. X.; Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R.; Heinz, T. F. Observation of biexcitons in monolayer WSe2. Nat. Phys. 2015, 11, 477–481.

    Article  CAS  Google Scholar 

  38. Zhang, Z. W.; Liu, Y.; Dai, C.; Yang, X. D.; Chen, P.; Ma, H. F.; Zhao, B.; Wu, R. X.; Huang, Z. W.; Wang, D. et al. Highly selective synthesis of monolayer or bilayer WSe2 single crystals by pre-annealing the solid precursor. Chem. Mater. 2021, 33, 1307–1313.

    Article  CAS  Google Scholar 

  39. Li, X. F.; Lin, M. W.; Lin, J. H.; Huang, B.; Puretzky, A. A.; Ma, C.; Wang, K.; Zhou, W.; Pantelides, S. T.; Chi, M. F. et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv. 2016, 2, e1501882.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Liu, H. W.; Li, D.; Ma, C.; Zhang, X. H.; Sun, X. X.; Zhu, C. G.; Zheng, B. Y.; Zou, Z. X.; Luo, Z. Y.; Zhu, X. L. et al. Van der Waals epitaxial growth of vertically stacked Sb2Te3/MoS2 p-n heterojunctions for high performance optoelectronics. Nano Energy 2019, 59, 66–74.

    Article  CAS  Google Scholar 

  41. Zou, J. H.; Ke, Y. Z.; Zhou, X. Y.; Huang, Y. X.; Du, W.; Lin, L.; Wei, S. Y.; Luo, L. Z.; Liu, H. Z.; Li, C. L. et al. Broadband visible-near infrared two-dimensional WSe2/In2Se3 photodetector for underwater optical communications. Adv. Opt. Mater. 2022, 10, 2200143.

    Article  CAS  Google Scholar 

  42. Cai, W. F.; Wang, J. Y.; He, Y. M.; Liu, S.; Xiong, Q. H.; Liu, Z.; Zhang, Q. Strain-modulated photoelectric responses from a flexible α-In2Se3/3R MoS2 heterojunction. Nanomicro Lett. 2021, 13, 74.

    ADS  PubMed  PubMed Central  Google Scholar 

  43. Zheng, B. Y.; Li, D.; Zhu, C. G.; Lan, J. Y.; Sun, X. X.; Zheng, W. H.; Liu, H. W.; Zhang, X. H.; Zhu, X. L.; Feng, Y. X. et al. Dual-channel type tunable field-effect transistors based on vertical bilayer WS2(1−x)Se2x/SnS2 heterostructures. InfoMat 2020, 2, 752–760.

    Article  CAS  Google Scholar 

  44. Gao, W.; Zhang, S.; Zhang, F.; Wen, P. T.; Zhang, L.; Sun, Y. M.; Chen, H. Y.; Zheng, Z. Q.; Yang, M. M.; Luo, D. X. et al. 2D WS2 based asymmetric Schottky photodetector with high performance. Adv. Electron. Mater. 2021, 7, 2000964.

    Article  CAS  Google Scholar 

  45. Zhai, X. K.; Xu, X.; Peng, J. B.; Jing, F. L.; Zhang, Q. L.; Liu, H. J.; Hu, Z. G. Enhanced optoelectronic performance of CVD-grown metal-semiconductor NiTe2/MoS2 heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 24093–24101.

    Article  CAS  PubMed  Google Scholar 

  46. Octon, T. J.; Nagareddy, V. K.; Russo, S.; Craciun, M. F.; Wright, C. D. Fast high-responsivity few-layer MoTe2 photodetectors. Adv. Opt. Mater. 2016, 4, 1750–1754.

    Article  CAS  Google Scholar 

  47. Lee, I.; Rathi, S.; Lim, D.; Li, L. J.; Park, J.; Lee, Y.; Yi, K. S.; Dhakal, K. P.; Kim, J.; Lee, C. et al. Gate-tunable hole and electron carrier transport in atomically thin dual-channel WSe2/MoS2 heterostructure for ambipolar field-effect transistors. Adv. Mater. 2016, 28, 9519–9525.

    Article  CAS  PubMed  Google Scholar 

  48. Paul Inbaraj, C. R.; Mathew, R. J.; Ulaganathan, R. K.; Sankar, R.; Kataria, M.; Lin, H. Y.; Cheng, H. Y.; Lin, K. H.; Lin, H. I.; Liao, Y. M. et al. Modulating charge separation with hexagonal boron nitride mediation in vertical van der Waals heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 26213–26221.

    Article  CAS  PubMed  Google Scholar 

  49. Yuan, J. T.; Zhou, S. T.; Xiao, B. H.; Bao, L. J.; Ai, Z. K.; Shen, Y. H.; Ran, G.; Cheng, Q. J. Monolayer WS2 nanosheets passivated with HfO2 for enhanced photodetectors. ACS Appl. Nano Mater. 2023, 6, 4594–4601.

    Article  CAS  Google Scholar 

  50. Thakar, K.; Mukherjee, B.; Grover, S.; Kaushik, N.; Deshmukh, M.; Lodha, S. Multilayer ReS2 photodetectors with gate tunability for high responsivity and high-speed applications. ACS Appl. Mater. Interfaces 2018, 10, 36512–36522.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, M. Q.; Liu, X. Q.; Duan, X. P.; Zhang, S.; Liu, C.; Wan, D.; Li, G. L.; Xia, Z.; Fan, Z. Y.; Liao, L. Schottky-contacted WSe2 hot-electron photodetectors with fast response and high sensitivity. Acs Photonics 2021, 9, 132–137.

    Article  Google Scholar 

  52. You, W. X.; Zheng, B. Y.; Xu, Z. Y.; Jiang, Y.; Zhu, C. G.; Zheng, W. H.; Yang, X.; Sun, X. X.; Liang, J. Y.; Yi, X. et al. Strong interfacial coupling in vertical WSe2/WS2 heterostructure for high performance photodetection. Appl. Phys. Lett. 2022, 120, 181108.

    Article  ADS  CAS  Google Scholar 

  53. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Meng, L. Y.; Zhang, N. N.; Yang, M. L.; Yuan, X. X.; Liu, M. L.; Hu, H. Y.; Wang, L. M. Low-voltage and high-gain WSe2 avalanche phototransistor with an out-of-plane WSe2/WS2 heterojunction. Nano Res. 2023, 16, 3422–3428.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the following funding: the National Key R&D Program of China (No. 2022YFA1204300), the National Natural Science Foundation of China (Nos. 62104066, 52221001, 62090035, U19A2090, U22A20138 and 51902098), the Natural Science Foundation of Hunan Province (No. 2021JJ20016), the Science and Technology Innovation Program of Hunan Province (Nos. 2021RC3061 and 2020RC2028); the Key Program of Science and Technology Department of Hunan Province (Nos. 2019XK2001 and 2020XK2001), the Open Project Program of Wuhan National Laboratory for Optoelectronics (No. 2020WNLOKF016), the National Postdoctoral Program for Innovative Talents (No. BX2021094), and the Postdoctoral Science Foundation of China (No. 2020M680112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Li, Shengman Li or Anlian Pan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zheng, B., Wu, G. et al. Controlled growth of vertically stacked In2Se3/WSe2 heterostructures for ultrahigh responsivity photodetector. Nano Res. 17, 1856–1863 (2024). https://doi.org/10.1007/s12274-023-6021-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6021-3

Keywords

Navigation