Skip to main content
Log in

Temperature-modulated inversion and switching of chiroptical responses in dynamic side-by-side oligomers of gold nanorods

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Herein, a new strategy is proposed for achieving dynamic chiral controls in self-assembly systems of plasmonic nanorods based on temperature-modulation. Via enlarging Au{100} side facets of Au nanorod (AuNR) building block and changing surface ligand from often-used cetyltrimethylammonium bromide (CTAB) to cetylpyridinium chloride (CPC), inversion of chiroptical signal in side-by-side (SS) oligomers is realized. Under the guide of chiral cysteine (Cys), Au{100} side facet-linked SS rods twist in the opposite direction compared with Au{110} side facet-linked counterparts. At high CPC concentration, by controlling the incubation temperature of chiral Cys, the dominant twist mode can be regulated. Finite-difference time-domain (FDTD) simulations indicate the key role of the twisting dihedral angle of the oligomers in driving chiral signal inversion. At low CPC concentration, a temperature-sensitive chiral switching is observed owing to the conformation change of the CPC ligand layer. The temperature-modulated chiral responses are based on the interactions of chiral molecules, achiral surface ligands, and exposed facets of the building block. The rich dynamic tunability of chiroptical responses of plasmonic assemblies may find applications in stimulus-responsive nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hentschel, M.; Schäferling, M.; Duan, X. Y.; Giessen, H.; Liu, N. Chiral plasmonics. Sci. Adv. 2017, 3, e1602735.

    Google Scholar 

  2. Yang, L.; Liu, J. J.; Sun, P.; Ni, Z. Y.; Ma, Y. C.; Huang, Z. F. Chiral ligand-free, optically active nanoparticles inherently composed of chiral lattices at the atomic scale. Small 2020, 16, 2001473.

    CAS  Google Scholar 

  3. Zheng, J. P.; Cheng, X. Z.; Zhang, H.; Bai, X. P.; Ai, R. Q.; Shao, L.; Wang, J. F. Gold nanorods: The most versatile plasmonic nanoparticles. Chem. Rev. 2021, 121, 13342–13453.

    CAS  Google Scholar 

  4. Zheng, G. C.; Jiao, S. L.; Zhang, W.; Wang, S. L.; Zhang, Q. H.; Gu, L.; Ye, W. X.; Li, J. J.; Ren, X. C.; Zhang, Z. C. et al. Fine-tune chiroptical activity in discrete chiral Au nanorods. Nano Res. 2022, 15, 6574–6581.

    CAS  Google Scholar 

  5. Ni, B.; Mychinko, M.; Gómez-Graña, S.; Morales-Vidal, J.; Obelleiro-Liz, M.; Heyvaert, W.; Vila-Liarte, D.; Zhuo, X. L.; Albrecht, W.; Zheng, G. C. et al. Chiral seeded growth of gold nanorods into fourfold twisted nanoparticles with plasmonic optical activity. Adv. Mater. 2023, 35, 2208299.

    CAS  Google Scholar 

  6. Ni, B.; Zhou, J.; Stolz, L.; Cölfen, H. A facile and rational method to tailor the symmetry of Au@Ag nanoparticles. Adv. Mater. 2023, 35, 2209810.

    CAS  Google Scholar 

  7. Kumar, J.; López-Martínez, E.; Cortajarena, A. L.; Solís, D. M.; Taboada, J. M.; Díez-Buitrago, B.; Pavlov, V.; Liz-Marzán, L. M. Charge-induced shifts in chiral surface plasmon modes in gold nanorod assemblies. Part. Part. Syst. Charact. 2019, 36, 1800368.

    Google Scholar 

  8. Hu, Z. J.; Meng, D. J.; Lin, F.; Zhu, X.; Fang, Z. Y.; Wu, X. C. Plasmonic circular dichroism of gold nanoparticle based nanostructures. Adv. Opt. Mater. 2019, 7, 1801590.

    Google Scholar 

  9. Li, H. B.; Gao, X. S.; Zhang, C. Q.; Ji, Y. L.; Hu, Z. J.; Wu, X. C. Gold-nanoparticle-based chiral plasmonic nanostructures and their biomedical applications. Biosensors 2022, 12, 957.

    CAS  Google Scholar 

  10. Yan, J.; Hou, S.; Ji, Y. L.; Wu, X. C. Heat-enhanced symmetry breaking in dynamic gold nanorod oligomers: The importance of interface control. Nanoscale 2016, 8, 10030–10034.

    CAS  Google Scholar 

  11. Lv, J. W.; Gao, X. Q.; Han, B.; Zhu, Y. F.; Hou, K.; Tang, Z. Y. Self-assembled inorganic chiral superstructures. Nat. Rev. Chem. 2022, 6, 125–145.

    Google Scholar 

  12. Vila-Liarte, D.; Kotov, N. A.; Liz-Marzán, L. M. Template-assisted self-assembly of achiral plasmonic nanoparticles into chiral structures. Chem. Sci. 2022, 13, 595–610.

    CAS  Google Scholar 

  13. Lermusiaux, L.; Nisar, A.; Funston, A. M. Flexible synthesis of high-purity plasmonic assemblies. Nano Res. 2021, 14, 635–645.

    CAS  Google Scholar 

  14. Merg, A. D.; Boatz, J. C.; Mandal, A.; Zhao, G. P.; Mokashi-Punekar, S.; Liu, C.; Wang, X. T.; Zhang, P. J.; Van Der Wel, P. C. A.; Rosi, N. L. Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity. J. Am. Chem. Soc. 2016, 138, 13655–13663.

    CAS  Google Scholar 

  15. Liu, S. L.; Ma, X. Y.; Song, M.; Ji, C. Y.; Song, J.; Ji, Y. L.; Ma, S. J.; Jiang, J.; Wu, X. C.; Li, J. F. et al. Plasmonic nanosensors with extraordinary sensitivity to molecularly enantioselective recognition at nanoscale interfaces. ACS Nano 2021, 15, 19535–19545.

    CAS  Google Scholar 

  16. Thomas, A. R.; Swetha, K.; C, K. A.; Ashraf, R.; Kumar, J.; Kumar, S.; Mandal, S. S. Protein fibril assisted chiral assembly of gold nanorods. J. Mater. Chem. B 2022, 10, 6360–6371.

    CAS  Google Scholar 

  17. Cheng, Z.; Ma, Y.; Yang, L.; Cheng, F.; Huang, Z. J.; Natan, A.; Li, H. Y.; Chen, Y.; Cao, D. X.; Huang, Z. F. et al. Plasmonic-enhanced cholesteric films: Coassembling anisotropic gold nanorods with cellulose nanocrystals. Adv. Opt. Mater. 2019, 7, 1801816.

    Google Scholar 

  18. Nemati, A.; Shadpour, S.; Querciagrossa, L.; Mori, T.; Zannoni, C.; Hegmann, T. Highly sensitive, tunable chirality amplification through space visualized for gold nanorods capped with axially chiral binaphthyl derivatives. ACS Nano 2019, 13, 10312–10326.

    CAS  Google Scholar 

  19. Grzelak, D.; Tupikowska, M.; Vila-Liarte, D.; Beutel, D.; Bagiński, M.; Parzyszek, S.; Góra, M.; Rockstuhl, C.; Liz-Marzán, L. M.; Lewandowski, W. Liquid crystal templated chiral plasmonic films with dynamic tunability and moldability. Adv. Funct. Mater. 2022, 32, 2111280.

    CAS  Google Scholar 

  20. Martens, K.; Binkowski, F.; Nguyen, L.; Hu, L.; Govorov, A. O.; Burger, S.; Liedl, T. Long- and short-ranged chiral interactions in DNA-assembled plasmonic chains. Nat. Commun. 2021, 12, 2025.

    CAS  Google Scholar 

  21. Pan, J. H.; Wang, X. Y.; Zhang, J. J.; Zhang, Q.; Wang, Q. B.; Zhou, C. Chirally assembled plasmonic metamolecules from intrinsically chiral nanoparticles. Nano Res. 2022, 15, 9447–9453.

    CAS  Google Scholar 

  22. Zhai, D. W.; Wang, P.; Wang, R. Y.; Tian, X. R.; Ji, Y. L.; Zhao, W. J.; Wang, L. M.; Wei, H.; Wu, X. C.; Zhang, X. D. Plasmonic polymers with strong chiroptical response for sensing molecular chirality. Nanoscale 2015, 7, 10690–10698.

    CAS  Google Scholar 

  23. Bao, Z. Y.; Dai, J. Y.; Zhang, Q.; Ho, K. H.; Li, S. Q.; Chan, C. H.; Zhang, W.; Lei, D. Y. Geometric modulation of induced plasmonic circular dichroism in nanoparticle assemblies based on backaction and field enhancement. Nanoscale 2018, 10, 19684–19691.

    CAS  Google Scholar 

  24. Cheng, G. Q.; Xu, D.; Lu, Z. Y.; Liu, K. Chiral self-assembly of nanoparticles induced by polymers synthesized via reversible addition-fragmentation chain transfer polymerization. ACS Nano 2019, 13, 1479–1489.

    CAS  Google Scholar 

  25. Yan, W. J.; Wang, Y. L.; Zhuang, H.; Zhang, J. H. DNA-engineered chiroplasmonic heteropyramids for ultrasensitive detection of mercury ion. Biosens. Bioelectron. 2015, 68, 516–520.

    CAS  Google Scholar 

  26. Wu, X. L.; Xu, L. G.; Ma, W.; Liu, L. Q.; Kuang, H.; Kotov, N. A.; Xu, C. L. Propeller-like nanorod-upconversion nanoparticle assemblies with intense chiroptical activity and luminescence enhancement in aqueous phase. Adv. Mater. 2016, 28, 5907–5915.

    CAS  Google Scholar 

  27. Xu, L. G.; Gao, Y. F.; Kuang, H.; Liz-Marzan, L. M.; Xu, C. L. MicroRNA-directed intracellular self-assembly of chiral nanorod dimers. Angew. Chem., Int. Ed. 2018, 57, 10544–10548.

    CAS  Google Scholar 

  28. Zhang, Q. F.; Hernandez, T.; Smith, K. W.; Jebeli, S. A. H.; Dai, A. X.; Warning, L.; Baiyasi, R.; McCarthy, L. A.; Guo, H.; Chen, D. H. et al. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science 2019, 365, 1475–1478.

    CAS  Google Scholar 

  29. Wang, Z. Y.; Zhang, N. N.; Li, J. C.; Lu, J.; Zhao, L.; Fang, X. D.; Liu, K. Serum albumin guided plasmonic nanoassemblies with opposite chiralities. Soft Matter 2021, 17, 6298–6304.

    CAS  Google Scholar 

  30. Severoni, E.; Maniappan, S.; Liz-Marzán, L. M.; Kumar, J.; García De Abajo, F. J.; Galantini, L. Plasmon-enhanced optical chirality through hotspot formation in surfactant-directed self-assembly of gold nanorods. ACS Nano 2020, 14, 16712–16722.

    CAS  Google Scholar 

  31. Song, M.; Tong, L. M.; Liu, S. L.; Zhang, Y. W.; Dong, J. Y.; Ji, Y. L.; Guo, Y.; Wu, X. C.; Zhang, X. D.; Wang, R. Y. Nonlinear amplification of chirality in self-assembled plasmonic nanostructures. ACS Nano 2021, 15, 5715–5724.

    CAS  Google Scholar 

  32. Fan, Y.; Ouyang, S. B.; Zhou, D.; Wei, J. C.; Liao, L. Biological applications of chiral inorganic nanomaterials. Chirality 2022, 34, 760–781.

    CAS  Google Scholar 

  33. Kumar, J.; Eraña, H.; López-Martínez, E.; Claes, N.; Martín, V. F.; Solís, D. M.; Bals, S.; Cortajarena, A. L.; Castilla, J.; Liz-Marzán, L. M. Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc. Natl. Acad. Sci. USA 2018, 115, 3225–3230.

    CAS  Google Scholar 

  34. Qu, A. H.; Sun, M. Z.; Kim, J. Y.; Xu, L. G.; Hao, C. L.; Ma, W.; Wu, X. L.; Liu, X. G.; Kuang, H.; Kotov, N. A. et al. Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nat. Biomed. Eng. 2021, 5, 103–113.

    CAS  Google Scholar 

  35. Li, Z. T.; Zhu, Z. N.; Liu, W. J.; Zhou, Y. L.; Han, B.; Gao, Y.; Tang, Z. Y. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 2012, 134, 3322–3325.

    CAS  Google Scholar 

  36. Jin, X.; Jiang, J.; Liu, M. H. Reversible plasmonic circular dichroism via hybrid supramolecular gelation of achiral gold nanorods. ACS Nano 2016, 10, 11179–11186.

    CAS  Google Scholar 

  37. Wang, S.; Zhang, Y. N.; Qin, X. J.; Zhang, L.; Zhang, Z.; Lu, W. S.; Liu, M. H. Guanosine assembly enabled gold nanorods with dual thermo- and photoswitchable plasmonic chiroptical activity. ACS Nano 2020, 14, 6087–6096.

    CAS  Google Scholar 

  38. Zhao, W. J.; Zhang, W. X.; Wang, R. Y.; Ji, Y. L.; Wu, X. C.; Zhang, X. D. Photocontrollable chiral switching and selection in self-assembled plasmonic nanostructure. Adv. Funct. Mater. 2019, 29, 1900587.

    Google Scholar 

  39. Meng, D. J.; Chen, Y. D.; Ji, Y. L.; Shi, X. H.; Wang, H.; Wu, X. C. Temperature effect of plasmonic circular dichroism in dynamic oligomers of AuNR@Ag nanorods driven by cysteine: The role of surface atom migration. Adv. Opt. Mater. 2021, 9, 2001274.

    CAS  Google Scholar 

  40. Ma, L.; Liu, Y.; Han, C.; Movsesyan, A.; Li, P. H.; Li, H. C.; Tang, P.; Yuan, Y. Q.; Jiang, S. X.; Ni, W. H. et al. DNA-assembled chiral satellite-core nanoparticle superstructures: Two-state chiral interactions from dynamic and static conformations. Nano Lett. 2022, 22, 4784–4791.

    CAS  Google Scholar 

  41. Liu, F. S.; Li, N.; Shang, Y. X.; Wang, Y. M.; Liu, Q.; Ma, Z. T.; Jiang, Q.; Ding, B. Q. A DNA-based plasmonic nanodevice for cascade signal amplification. Angew. Chem., Int. Ed. 2022, 61, e202114706.

    CAS  Google Scholar 

  42. Huang, Y. K.; Nguyen, M. K.; Natarajan, A. K.; Nguyen, V. H.; Kuzyk, A. A DNA origami-based chiral plasmonic sensing device. ACS Appl. Mater. Interfaces 2018, 10, 44221–44225.

    CAS  Google Scholar 

  43. Funck, T.; Nicoli, F.; Kuzyk, A.; Liedl, T. Sensing picomolar concentrations of RNA using switchable plasmonic chirality. Angew. Chem., Int. Ed. 2018, 57, 13495–13498.

    CAS  Google Scholar 

  44. Hou, S.; Wen, T.; Zhang, H.; Liu, W. Q.; Hu, X. N.; Wang, R. Y.; Hu, Z. J.; Wu, X. C. Fabrication of chiral plasmonic oligomers using cysteine-modified gold nanorods as monomers. Nano Res. 2014, 7, 1699–1705.

    CAS  Google Scholar 

  45. Zhang, C. Q.; Gao, X. S.; Li, H. B.; Ji, Y. L.; Cai, R.; Hu, Z. J.; Wu, X. C. Regulation of chirality transfer and amplification from chiral cysteine to gold nanorod assemblies using nonchiral surface ligands. Adv. Opt. Mater. 2023, 2202804.

  46. Smith, K. W.; Zhao, H. Q.; Zhang, H.; Sánchez-Iglesias, A.; Grzelczak, M.; Wang, Y. M.; Chang, W. S.; Nordlander, P.; Liz-Marzán, L. M.; Link, S. Chiral and achiral nanodumbbell dimers: The effect of geometry on plasmonic properties. ACS Nano 2016, 10, 6180–6188.

    CAS  Google Scholar 

  47. Lee, K. S.; El-Sayed, M. A. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J. Phys. Chem. B 2005, 109, 20331–20338.

    CAS  Google Scholar 

  48. Funston, A. M.; Novo, C.; Davis, T. J.; Mulvaney, P. Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 2009, 9, 1651–1658.

    CAS  Google Scholar 

  49. Jain, P. K.; Eustis, S.; El-Sayed, M. A. Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B 2006, 110, 18243–18253.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22072032), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), and the National Key Basic Research Program of China (No. 2021YFA1202803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijian Hu or Xiaochun Wu.

Electronic Supplementary Material

12274_2023_5985_MOESM1_ESM.pdf

Temperature-modulated inversion and switching of chiroptical responses in dynamic side-by-side oligomers of gold nanorods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Meng, D., Zhang, C. et al. Temperature-modulated inversion and switching of chiroptical responses in dynamic side-by-side oligomers of gold nanorods. Nano Res. 16, 13392–13399 (2023). https://doi.org/10.1007/s12274-023-5985-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5985-3

Keywords

Navigation