Skip to main content
Log in

Atomscopic of ripple origins for two-dimensional monolayer transition metal dichalcogenides

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

During the development of ultrathin two-dimensional (2D) materials, the appearance of ripples has been widely observed. However, the formation mechanisms and their influences are still rarely investigated, especially their contributions to the electronic structures and optical properties. To compensate for the knowledge gap, we have carried out comprehensive theoretical studies on the monolayer WSe2 with a series of ripple structures from 0 to 12 Å in different lattice sizes. The sensitivity of the formation energy, band structures, electronic structures, and optical properties to the ripple structures have been performed systematically for the first time. The formation of ripples in Armchair and Zigzag simultaneously are more energetically favorable, leading to more flexible optimizations of the optoelectronic properties. The improved charge-locking effect and extension of absorption ranges indicate the significant role of ripple structures. The spontaneous formation of ripples is associated with orbital rearrangements and structural distortions. This leads to the unique charge carrier correlate inversion between W-5d and Se-4p orbitals, resulting in the pinning of the Fermi level. This work has supplied significant references to understand ultrathin 2D structures and benefit their future developments and applications in high-performance optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

    Article  ADS  CAS  Google Scholar 

  2. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 2016, 10, 216–226.

    Article  ADS  CAS  Google Scholar 

  4. Chowdhury, T.; Sadler, E. C.; Kempa, T. J. Progress and prospects in transition-metal dichalcogenide research beyond 2D. Chem. Rev. 2020, 120, 12563–12591.

    Article  CAS  PubMed  Google Scholar 

  5. Zheng, H. H.; Wu, B.; Wang, C. T.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Duan, J. A.; Liu, Y. P. Exploring the regulatory effect of stacked layers on Moiré excitons in twisted WSe2/WSe2/WSe2 homotrilayer. Nano Res in press, https://doi.org/10.1007/sl2274-023-5822-8.

  6. Zhao, B.; Dang, W. Q.; Yang, X. D.; Li, J.; Bao, H. H.; Wang, K.; Luo, J.; Zhang, Z. W.; Li, B.; Xie, H. P. et al. Van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. Nano Res. 2019, 12, 1683–1689.

    Article  CAS  Google Scholar 

  7. Rasmita, A.; Gao, W. B. Opto-valleytronics in the 2D van der Waals heterostructure. Nano Res. 2021, 14, 1901–1911.

    Article  CAS  Google Scholar 

  8. Miró, P.; Ghorbani-Asl, M.; Heine, T. Spontaneous ripple formation in MoS2 monolayers: Electronic structure and transport effects. Adv. Mater. 2013, 25, 5473–5475.

    Article  PubMed  Google Scholar 

  9. Tapasztó, L.; Dumitrică, T.; Kim, S. J.; Nemes-Incze, P.; Hwang, C.; Biró, L. P. Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat. Phys. 2012, 8, 739–742.

    Article  Google Scholar 

  10. Brivio, J.; Alexander, D. T. L.; Kis, A. Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 2011, 11, 5148–5153.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zhang, W. J.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456–3461.

    Article  CAS  PubMed  Google Scholar 

  13. Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J. B. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 2014, 14, 3185–3190.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Pochet, P.; McGuigan, B. C.; Coraux, J.; Johnson, H. T. Toward Moiré engineering in 2D materials via dislocation theory. Appl. Mater. Today 2017, 9, 240–250.

    Article  Google Scholar 

  15. Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W.; Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. Deng, S. K.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212.

    Article  CAS  Google Scholar 

  17. Xie, S. E.; Tu, L. J.; Han, Y. M.; Huang, L. J.; Kang, K.; Lao, K. U.; Poddar, P.; Park, C.; Muller, D. A.; DiStasio, R. A. Jr. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 2018, 359, 1131–1136.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Hendricks, T. R.; Wang, W.; Lee, I. Buckling in nanomechanical films. Soft Matter 2010, 6, 3701–3706.

    Article  ADS  CAS  Google Scholar 

  19. Ostadhossein, A.; Rahnamoun, A.; Wang, Y. X.; Zhao, P.; Zhang, S. L.; Crespi, V. H.; van Duin, A. C. T. ReaxFF reactive force-field study of molybdenum disulfide (MoS2). J. Phys. Chem. Lett. 2017, 8, 631–640.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y. X.; Crespi, V. H. NanoVelcro: Theory of guided folding in atomically thin sheets with regions of complementary doping. Nano Lett. 2017, 17, 6708–6714.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Petrović, M.; Sadowski, J. T.; Šiber, A.; Kralj, M. Wrinkles of graphene on Ir(111): Macroscopic network ordering and internal multi-lobed structure. Carbon 2015, 94, 856–863.

    Article  Google Scholar 

  22. Jung, S.; Rutter, G. M.; Klimov, N. N.; Newell, D. B.; Calizo, I.; Hight-Walker, A. R.; Zhitenev, N. B.; Stroscio, J. A. Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots. Nat. Phys. 2011, 7, 245–251.

    Article  CAS  Google Scholar 

  23. Zang, J. F.; Ryu, S.; Pugno, N.; Wang, Q. M.; Tu, Q.; Buehler, M. J.; Zhao, X. H. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 2013, 12, 321–325.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Deng, S. K.; Gao, E. L.; Wang, Y. L.; Sen, S.; Sreenivasan, S. T.; Behura, S.; Král, P.; Xu, Z. P.; Berry, V. Confined, oriented, and electrically anisotropic graphene wrinkles on bacteria. ACS Nano 2016, 10, 8403–8412.

    Article  CAS  PubMed  Google Scholar 

  27. Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S. et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol 2008, 3, 327–331.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Li, M. Y.; Chen, C. H.; Shi, Y. M.; Li, L. J. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 2016, 19, 322–335.

    Article  Google Scholar 

  29. Zhu, C. R.; Gao, D. Q.; Ding, J.; Chao, D. L.; Wang, J. TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chem. Soc. Rev. 2018, 47, 4332–4356.

    Article  CAS  PubMed  Google Scholar 

  30. Fu, Q.; Han, J. C.; Wang, X. J.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W. W.; Liu, S. W.; Gao, T. L.; Zhang, Z. H. et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 2021, 33, 1907818.

    Article  CAS  Google Scholar 

  31. Gong, C. H.; Zhang, Y. X.; Chen, W.; Chu, J. W.; Lei, T. Y.; Pu, J. R.; Dai, L. P.; Wu, C. Y.; Cheng, Y. H.; Zhai, T. Y. et al. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides. Adv. Sci. 2017, 4, 1700231.

    Article  Google Scholar 

  32. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed. 2010, 49, 4059–1062.

    Article  CAS  Google Scholar 

  35. Luo, S. W.; Hao, G. L.; Fan, Y. P.; Kou, L. Z.; He, C. Y.; Qi, X.; Tang, C.; Li, J.; Huang, K.; Zhong, J. X. Formation of ripples in atomically thin MoS2 and local strain engineering of electrostatic properties. Nanotechnology 2015, 26, 105705.

    Article  ADS  PubMed  Google Scholar 

  36. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.

    Article  CAS  Google Scholar 

  37. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Hasnip, P. J.; Pickard, C. J. Electronic energy minimisation with ultrasoft pseudopotentials. Comput. Phys. Commun. 2066, 174, 24–29.

    Article  ADS  MathSciNet  Google Scholar 

  39. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    Article  ADS  CAS  Google Scholar 

  40. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

    Article  ADS  CAS  Google Scholar 

  41. Head, J. D.; Zerner, M. C. A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270.

    Article  ADS  CAS  Google Scholar 

  42. Probert, M. I. J.; Payne, M. C. Improving the convergence of defect calculations in supercells: An ab initio study of the neutral silicon vacancy. Phys. Rev. B 2003, 67, 075204.

    Article  ADS  Google Scholar 

  43. Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666.

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Dhakal, K. P.; Roy, S.; Jang, H.; Chen, X.; Yun, W. S.; Kim, H.; Lee, J.; Kim, J.; Ahn, J. H. Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem. Mater. 2017, 29, 5124–5133.

    Article  CAS  Google Scholar 

  46. Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

    Article  ADS  PubMed  Google Scholar 

  47. Chowdhur, E. H.; Rahman, M. H.; Fatema S.; Islam, M. M. Investigation of the mechanical properties and fracture mechanisms of graphene/WSe2 vertical heterostructure: A molecular dynamics study. Comput. Mater. Sci. 2021, 188, 110231.

    Article  Google Scholar 

  48. Slaughter, W. S. The Linearized Theory of Elasiictty; Birkhäuser: Boston, 2002.

    Book  Google Scholar 

  49. Ding, W. Y.; Han, D.; Zhang, J. C.; Wang, X. Y. Mechanical responses of WSe2 monolayers: A molecular dynamics study. Mater. Res. Express 2019, 6, 085071.

    Article  ADS  CAS  Google Scholar 

  50. Ng, H. K.; Xiang, D.; Suwardi, A.; Hu, G. W.; Yang, K.; Zhao, Y. S.; Liu, T.; Cao, Z. H.; Liu, H. J.; Li, S. S. et al. Improving carrier mobility in two-dimensional semiconductors with rippled materials. Nat. Electron. 2022, 5, 489–496.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Key R&D Program of China (No. 2021YFA1501101), the National Natural Science Foundation of China/Research Grant Council of Hong Kong Joint Research Scheme (No. N_PolyU502/21), the funding for Projects of Strategic Importance of The Hong Kong Polytechnic University (Project Code: 1-ZE2V), the Shenzhen Fundamental Research Scheme-General Program (No. JCYJ20220531090807017), the Natural Science Foundation of Guangdong Province (No. 2023A1515012219), and the Departmental General Research Fund (Project Code: ZVUL) from The Hong Kong Polytechnic University. The authors also thank the support from Research Centre for Carbon-Strategic Catalysis (RC-CSC), Research Institute for Smart Energy (RISE), and Research Institute for Intelligent Wearable Systems (RI-IWEAR) of the Hong Kong Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bolong Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Sun, M., Wu, X. et al. Atomscopic of ripple origins for two-dimensional monolayer transition metal dichalcogenides. Nano Res. 17, 2136–2144 (2024). https://doi.org/10.1007/s12274-023-5966-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5966-6

Keywords

Navigation