Skip to main content
Log in

Long-term functional maintenance of primary hepatocytes in vitro using macroporous hydrogels engineered through liquid-liquid phase separation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Preserving the functionality of hepatocytes in vitro poses a significant challenge in liver tissue engineering and bioartificial liver, as these cells rapidly lose their metabolic and functional characteristics after isolation. Inspired by the macroporous structures found in native liver tissues, here we develop synthetic hydrogel scaffolds that closely mimic the liver’s structural organization through the phase separation between polyethylene glycol (PEG) and polysaccharides. Our hydrogels exhibit interconnected macroporous structures and appropriate mechanical properties, providing an optimal microenvironment conducive to hepatocyte adhesion and the formation of sizable aggregates. Compared to two-dimensional hepatocyte cultures, enhanced functionalities of hepatocytes cultured in our macroporous hydrogels were observed for 14 days, as evidenced by quantitative reverse-transcription–polymerase chain reactions (qRT-PCR), immunofluorescence, and enzyme linked immunosorbent assay (ELISA) analyses. Protein sequencing data further confirmed the establishment of cell-cell interactions among hepatocytes when cultured in our hydrogels. Notably, these hepatocytes maintained a protein expression lineage that closely resembled freshly isolated hepatocytes, particularly in the Notch and tumor necrosis factor (TNF) signaling pathways. These results suggest that the macroporous hydrogels are attractive scaffolds for liver tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stanger, B. Z. Cellular homeostasis and repair in the mammalian liver. Annu. Rev. Physiol. 2015, 77, 179–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bechmann, L. P.; Hannivoort, R. A.; Gerken, G.; Hotamisligil, G. S.; Trauner, M.; Canbay, A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J. Hepatol. 2012, 56, 952–964.

    Article  CAS  PubMed  Google Scholar 

  3. Kaplowitz, N. Idiosyncratic drug hepatotoxicity. Nat. Rev. Drug Discovery 2005, 4, 489–499.

    Article  CAS  PubMed  Google Scholar 

  4. Bataller, R.; Brenner, D. A. Liver fibrosis. J. Clin. Invest. 2005, 115, 209–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vosough, M.; Moslem, M.; Pournasr, B.; Baharvand, H. Cell-based therapeutics for liver disorders. Br. Med. Bull. 2011, 100, 157–172.

    Article  CAS  PubMed  Google Scholar 

  6. Nicolas, C. T.; Hickey, R. D.; Chen, H. S.; Mao, S. A.; Lopera Higuita, M.; Wang, Y. J.; Nyberg, S. L. Concise review: Liver regenerative medicine: From hepatocyte transplantation to bioartificial livers and bioengineered grafts. Stem Cells 2017, 35, 42–50.

    Article  PubMed  Google Scholar 

  7. Agarwal, T.; Subramanian, B.; Maiti, T. K. Liver tissue engineering: Challenges and opportunities. ACS Biomater. Sci. Eng. 2019, 5, 4167–4182.

    Article  CAS  PubMed  Google Scholar 

  8. Mazza, G.; Al-Akkad, W.; Rombouts, K.; Pinzani, M. Liver tissue engineering: From implantable tissue to whole organ engineering. Hepatol. Commun. 2018, 2, 131–141.

    Article  PubMed  Google Scholar 

  9. Gramignoli, R.; Vosough, M.; Kannisto, K.; Srinivasan, R. C.; Strom, S. C. Clinical hepatocyte transplantation: Practical limits and possible solutions. Eur. Surg. Res. 2015, 54, 162–177.

    Article  CAS  PubMed  Google Scholar 

  10. Jorns, C.; Ellis, E. C.; Nowak, G.; Fischler, B.; Nemeth, A.; Strom, S. C.; Ericzon, B. G. Hepatocyte transplantation for inherited metabolic diseases of the liver. J. Intern. Med. 2012, 272, 201–223.

    Article  CAS  PubMed  Google Scholar 

  11. Mirdamadi, E. S.; Kalhori, D.; Zakeri, N.; Azarpira, N.; Solati-Hashjin, M. Liver tissue engineering as an emerging alternative for liver disease treatment. Tissue Eng. Part B:Rev. 2020, 26, 145–163.

    Article  PubMed  Google Scholar 

  12. Heydari, Z.; Najimi, M.; Mirzaei, H.; Shpichka, A.; Ruoss, M.; Farzaneh, Z.; Montazeri, L.; Piryaei, A.; Timashev, P.; Gramignoli, R. et al. Tissue engineering in liver regenerative medicine: Insights into novel translational technologies. Cells 2020, 9, 304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tahmasbi Rad, A.; Ali, N.; Kotturi, H. S. R.; Yazdimamaghani, M.; Smay, J.; Vashaee, D.; Tayebi, L. Conducting scaffolds for liver tissue engineering. J. Biomed. Mater. Res. A 2014, 102, 4169–4181.

    Article  Google Scholar 

  14. Hoganson, D. M.; Pryor, H. I.; Vacanti, J. P. Tissue engineering and organ structure: A vascularized approach to liver and lung. Pediatr. Res. 2008, 63, 520–526.

    Article  PubMed  Google Scholar 

  15. Li, Y. S.; Harn, H. J.; Hsieh, D. K.; Wen, T. C.; Subeq, Y. M.; Sun, L. Y.; Lin, S. Z.; Chiou, T. W. Cells and materials for liver tissue engineering. Cell Transplant. 2013, 22, 685–700.

    Article  PubMed  Google Scholar 

  16. Godoy, P.; Hewitt, N. J.; Albrecht, U.; Andersen, M. E.; Ansari, N.; Bhattacharya, S.; Bode, J. G.; Bolleyn, J.; Borner, C.; Böttger, J. et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch. Toxicol. 2013, 87, 1315–1530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhatia, S. N.; Underhill, G. H.; Zaret, K. S.; Fox, I. J. Cell and tissue engineering for liver disease. Sci. Transl. Med. 2014, 6, 245sr2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ishibashi, H.; Nakamura, M.; Komori, A.; Migita, K.; Shimoda, S. Liver architecture, cell function, and disease. Semin. Immunopathol. 2009, 31, 399–409.

    Article  PubMed  Google Scholar 

  19. Treyer, A.; Müsch, A. Hepatocyte polarity. In Comprehensive Physiology. American Physiological Society: Rockville, 2013; pp 243–287.

    Chapter  Google Scholar 

  20. Taub, R. Liver regeneration: From myth to mechanism. Nat. Rev. Mol. Cell Biol. 2004, 5, 836–847.

    Article  CAS  PubMed  Google Scholar 

  21. Godoy, P.; Hengstler, J. G.; Ilkavets, I.; Meyer, C.; Bachmann, A.; Müller, A.; Tuschl, G.; Mueller, S. O.; Dooley, S. Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor β-induced apoptosis. Hepatology 2009, 49, 2031–2043.

    Article  CAS  PubMed  Google Scholar 

  22. Arriazu, E.; Ruiz de Galarreta, M.; Cubero, F. J.; Varela-Rey, M.; Pérez de Obanos, M. P.; Leung, T. M.; Lopategi, A.; Benedicto, A.; Abraham-Enachescu, I.; Nieto, N. Extracellular matrix and liver disease. Antioxid. Redox Signal. 2014, 21, 1078–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689.

    Article  CAS  PubMed  Google Scholar 

  24. Discher, D. E.; Mooney, D. J.; Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 2009, 324, 1673–1677.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin, G. L.; Hankenson, K. D. Integration of BMP, wnt, and notch signaling pathways in osteoblast differentiation. J. Cell. Biochem. 2011, 112, 3491–3501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xiang, C. G.; Du, Y. Y.; Meng, G. F.; Soon Yi, L.; Sun, S. C.; Song, N.; Zhang, X. N.; Xiao, Y. W.; Wang, J.; Yi, Z. G. et al. Long-term functional maintenance of primary human hepatocytes in vitro. Science 2019, 364, 399–402.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Batista, T. M.; Garcia-Martin, R.; Cai, W. K.; Konishi, M.; O’Neill, B. T.; Sakaguchi, M.; Kim, J. H.; Jung, D. Y.; Kim, J. K.; Kahn, C. R. Multi-dimensional transcriptional remodeling by physiological insulin in vivo. Cell Rep. 2019, 26, 3429–3443.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goldstein, I.; Yizhak, K.; Madar, S.; Goldfinger, N.; Ruppin, E.; Rotter, V. p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production. Cancer Metab. 2013, 1, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sellaro, T. L.; Ranade, A.; Faulk, D. M.; McCabe, G. P.; Dorko, K.; Badylak, S. F.; Strom, S. C. Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels. Tissue Eng. Part A 2010, 16, 1075–1082.

    Article  CAS  PubMed  Google Scholar 

  30. Peng, H. S.; Poovaiah, N.; Forrester, M.; Cochran, E.; Wang, Q. Ex vivo culture of primary intestinal stem cells in collagen gels and foams. ACS Biomater. Sci. Eng. 2015, 1, 37–42.

    Article  CAS  PubMed  Google Scholar 

  31. Dunn, J. C. Y.; Tompkins, R. G.; Yarmush, M. L. Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol. Prog. 1991, 7, 237–245.

    Article  CAS  PubMed  Google Scholar 

  32. Sidhu, J. S.; Farin, F. M.; Omiecinski, C. J. Influence of extracellular matrix overlay on phenobarbital-mediated induction of CYP2B1, 2B2, and 3A1 genes in primary adult rat hepatocyte culture. Arch. Biochem. Biophys. 1993, 301, 103–113.

    Article  CAS  PubMed  Google Scholar 

  33. Anderson, J. M.; Rodriguez, A.; Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100.

    Article  CAS  PubMed  Google Scholar 

  34. MacPherson, D.; Bram, Y.; Park, J.; Schwartz, R. E. Peptide-based scaffolds for the culture and maintenance of primary human hepatocytes. Sci. Rep. 2021, 11, 6772.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye, S. C.; Boeter, J. W. B.; Penning, L. C.; Spee, B.; Schneeberger, K. Hydrogels for liver tissue engineering. Bioengineering 2019, 6, 59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Popper, H.; Schaffner, F. Liver: Structure and Function; McGraw-Hill: New York, 1957.

    Google Scholar 

  37. Bhatia, S. N.; Balis, U. J.; Yarmush, M. L.; Toner, M. Effect of cell-cell interactions in preservation of cellular phenotype: Cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 1999, 13, 1883–1900.

    Article  CAS  PubMed  Google Scholar 

  38. Sato, K.; Kennedy, L.; Liangpunsakul, S.; Kusumanchi, P.; Yang, Z. H.; Meng, F. Y.; Glaser, S.; Francis, H.; Alpini, G. Intercellular communication between hepatic cells in liver diseases. Int. J. Mol. Sci. 2019, 20, 2180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kazemzadeh, N. M.; Ourang, F.; Soulati, H. M.; Goudarzi, A. Fabrication of porous hydroxyapatite-gelatin composite scaffolds for bone tissue engineering. Iran. Biomed. J. 2006, 10, 215–223.

    Google Scholar 

  40. Jiang, J. L.; Kojima, N.; Kinoshita, T.; Miyajima, A.; Yan, W. Q.; Sakai, Y. Cultivation of fetal liver cells in a three-dimensional poly-L-lactic acid scaffold in the presence of oncostatin M. Cell Transplant. 2002, 11, 403–406.

    Article  PubMed  Google Scholar 

  41. Mobini, S.; Hoyer, B.; Solati-Hashjin, M.; Lode, A.; Nosoudi, N.; Samadikuchaksaraei, A.; Gelinsky, M. Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering. J. Biomed. Mater. Res. A 2013, 101, 2392–2404.

    Article  PubMed  Google Scholar 

  42. Broguiere, N.; Husch, A.; Palazzolo, G.; Bradke, F.; Madduri, S.; Zenobi-Wong, M. Macroporous hydrogels derived from aqueous dynamic phase separation. Biomaterials 2019, 200, 56–65.

    Article  CAS  PubMed  Google Scholar 

  43. Ma, X. Y.; Yu, C.; Wang, P. R.; Xu, W. Z.; Wan, X. Y.; Lai, C. S. E.; Liu, J.; Koroleva-Maharajh, A.; Chen, S. C. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture. Biomaterials 2018, 185, 310–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, Q.; Zhao, M.; Mytnyk, S.; Klemm, B.; Zhang, K.; Wang, Y. M.; Yan, D. D.; Mendes, E.; van Esch, J. H. Self-orienting hydrogel micro-buckets as novel cell carriers. Angew. Chem. 2019, 131, 557–561.

    Article  ADS  Google Scholar 

  45. Zhang, Y. S.; Yue, K.; Aleman, J.; Mollazadeh-Moghaddam, K.; Bakht, S. M.; Yang, J. Z.; Jia, W. T.; Dell’Erba, V.; Assawes, P.; Shin, S. R. et al. 3D bioprinting for tissue and organ fabrication. Ann. Biomed. Eng. 2017, 45, 148–163.

    Article  CAS  PubMed  Google Scholar 

  46. Ma, X. Y.; Qu, X.; Zhu, W.; Li, Y. S.; Yuan, S. L.; Zhang, H.; Liu, J.; Wang, P. R.; Lai, C. S. E.; Zanella, F. et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl. Acad. Sci. USA 2016, 113, 2206–2211.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Desai, S. S.; Tung, J. C.; Zhou, V. X.; Grenert, J. P.; Malato, Y.; Rezvani, M.; Español-Suñer, R.; Willenbring, H.; Weaver, V. M.; Chang, T. T. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha. Hepatology 2016, 64, 261–275.

    Article  CAS  PubMed  Google Scholar 

  48. Yeh, W. C.; Li, P. C.; Jeng, Y. M.; Hsu, H. C.; Kuo, P. L.; Li, M. L.; Yang, P. M.; Lee, P. H. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med. Biol. 2002, 28, 467–474.

    Article  PubMed  Google Scholar 

  49. Kourouklis, A. P.; Kaylan, K. B.; Underhill, G. H. Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells. Biomaterials 2016, 99, 82–94.

    Article  CAS  PubMed  Google Scholar 

  50. Malik, R. K. Regulation of apoptosis by integrin receptors. J. Pediatr. Hematol. Oncol. 1997, 19, 541–545.

    Article  CAS  PubMed  Google Scholar 

  51. Thornberry, N. A.; Lazebnik, Y. Caspases: Enemies within. Science 1998, 281, 1312–1316.

    Article  CAS  PubMed  Google Scholar 

  52. Pinkse, G. G. M.; Voorhoeve, M. P.; Noteborn, M.; Terpstra, O. T.; Bruijn, J. A.; De Heer, E. Hepatocyte survival depends on β1-integrin-mediated attachment of hepatocytes to hepatic extracellular matrix. Liver Int. 2004, 24, 218–226.

    Article  CAS  PubMed  Google Scholar 

  53. Lapcik, L. J.; Bohdanecky, M.; Lapcik, L.; Bakos, D. ChemInform abstract: Hyaluronic acid preparation, structure, properties, application. ChemInform 1991, 22, 281–299.

    Google Scholar 

  54. Vasanthan, K. S.; Subramanian, A.; Krishnan, U. M.; Sethuraman, S. Role of biomaterials, therapeutic molecules and cells for hepatic tissue engineering. Biotechnol. Adv. 2012, 30, 742–752.

    Article  CAS  PubMed  Google Scholar 

  55. Ma, C. Y. J.; Kumar, R.; Xu, X. Y.; Mantalaris, A. A combined fluid dynamics, mass transport and cell growth model for a three-dimensional perfused biorector for tissue engineering of haematopoietic cells. Biochem. Eng. J. 2007, 35, 1–11.

    Article  Google Scholar 

  56. Loh, Q. L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev. 2013, 19, 485–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology 2008, 47, 1394–1400.

    Article  CAS  PubMed  Google Scholar 

  58. Chen, A. A.; Khetani, S. R.; Lee, S.; Bhatia, S. N.; Van Vliet, K. J. Modulation of hepatocyte phenotype in vitro via chemomechanical tuning of polyelectrolyte multilayers. Biomaterials 2009, 30, 1113–1120.

    Article  CAS  PubMed  Google Scholar 

  59. Mattei, G.; Magliaro, C.; Giusti, S.; Ramachandran, S. D.; Heinz, S.; Braspenning, J.; Ahluwalia, A. On the adhesion-cohesion balance and oxygen consumption characteristics of liver organoids. PLoS One 2017, 12, e0173206.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xia, T. T.; Zhao, R. Z.; Liu, W. Q.; Huang, Q. P.; Chen, P. X.; Waju, Y. N.; Al-Ani, M. K.; Lv, Y. G.; Yang, L. Effect of substrate stiffness on hepatocyte migration and cellular Young’s modulus. J. Cell. Physiol. 2018, 233, 6996–7006.

    Article  CAS  PubMed  Google Scholar 

  61. Cozzolino, A. M.; Noce, V.; Battistelli, C.; Marchetti, A.; Grassi, G.; Cicchini, C.; Tripodi, M.; Amicone, L. Modulating the substrate stiffness to manipulate differentiation of resident liver stem cells and to improve the differentiation state of hepatocytes. Stem Cells Int. 2016, 2016, 5481493.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Deegan, D. B.; Zimmerman, C.; Skardal, A.; Atala, A.; Shupe, T. D. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology. J. Mech. Behav. Biomed. Mater. 2016, 55, 87–103.

    Article  CAS  Google Scholar 

  63. Passi, M.; Zahler, S. Mechano-signaling aspects of hepatocellular carcinoma. J. Cancer 2021, 12, 6411–6421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. You, J.; Park, S. A.; Shin, D. S.; Patel, D.; Raghunathan, V. K.; Kim, M.; Murphy, C. J.; Tae, G.; Revzin, A. Characterizing the effects of heparin gel stiffness on function of primary hepatocytes. Tissue Eng. Part A 2013, 19, 2655–2663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kidambi, S.; Yarmush, R. S.; Novik, E.; Chao, P. Y.; Yarmush, M. L.; Nahmias, Y. Oxygen-mediated enhancement of primary hepatocyte metabolism, functional polarization, gene expression, and drug clearance. Proc. Natl. Acad. Sci. USA 2009, 106, 15714–15719.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Spinella, R.; Sawhney, R.; Jalan, R. Albumin in chronic liver disease: Structure, functions and therapeutic implications. Hepatol. Int. 2016, 10, 124–132.

    Article  PubMed  Google Scholar 

  67. Fairbanks, K. D.; Tavill, A. S. Liver disease in alpha 1-antitrypsin deficiency: A review. Am. J. Gastroenterol. 2008, 103, 2136–2141.

    Article  CAS  PubMed  Google Scholar 

  68. Park, M. J.; D’Alecy, L. G.; Anderson, M. A.; Basrur, V.; Feng, Y. J.; Brady, G. F.; Kim, D. I.; Wu, J.; Nesvizhskii, A. I.; Lahann, J. Constitutive release of CPS1 in bile and its role as a protective cytokine during acute liver injury. Proc. Natl. Acad. Sci. USA 2019, 116, 9125–9134.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Villeneuve, J. P.; Pichette, V. Cytochrome P450 and liver diseases. Curr. Drug Metab. 2004, 5, 273–282.

    Article  CAS  PubMed  Google Scholar 

  70. Congiu, M.; Mashford, M. L.; Slavin, J. L.; Desmond, P. V. UDP glucuronosyltransferase mRNA levels in human liver disease. Drug Metab. Dispos. 2002, 30, 129–134.

    Article  CAS  PubMed  Google Scholar 

  71. Adams, J. M.; Jafar-Nejad, H. The roles of notch signaling in liver development and disease. Biomolecules 2019, 9, 608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fiorotto, R.; Raizner, A.; Morell, C. M.; Torsello, B.; Scirpo, R.; Fabris, L.; Spirli, C.; Strazzabosco, M. Notch signaling regulates tubular morphogenesis during repair from biliary damage in mice. J. Hepatol. 2013, 59, 124–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lu, J.; Zhou, Y. Q.; Hu, T. Y.; Zhang, H.; Shen, M.; Cheng, P.; Dai, W. Q.; Wang, F.; Chen, K.; Zhang, Y. et al. Notch signaling coordinates progenitor cell-mediated biliary regeneration following partial hepatectomy. Sci. Rep. 2016, 6, 22754.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, Y. X.; Zheng, S. P.; Qi, D.; Zheng, S. J.; Guo, J. L.; Zhang, S. L.; Weng, Z. H. Inhibition of notch signaling by a γ-secretase inhibitor attenuates hepatic fibrosis in rats. PLoS One 2012, 7, e46512.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kawaguchi, K.; Kaneko, S. Notch signaling and liver cancer. In Notch Signaling in Embryology and Cancer: Notch Signaling in Cancer. Springer: Cham 2021, 69–80.

    Chapter  Google Scholar 

  76. Wullaert, A.; van Loo, G.; Heyninck, K.; Beyaert, R. Hepatic tumor necrosis factor signaling and nuclear factor-κB: Effects on liver homeostasis and beyond. Endocr. Rev. 2007, 28, 365–386.

    Article  CAS  PubMed  Google Scholar 

  77. Hatano, E. Tumor necrosis factor signaling in hepatocyte apoptosis. J. Gastroenterol. Hepatol. 2007, 22, S43–S44.

    Article  CAS  PubMed  Google Scholar 

  78. Czaja, M. J. Cell signaling in oxidative stress-induced liver injury. Semin. Liver Dis. 2007, 27, 378–389.

    Article  CAS  PubMed  Google Scholar 

  79. Yang, Y. M.; Seki, E. TNFα in liver fibrosis. Curr. Pathobiol. Rep. 2015, 3, 253–261.

    Article  PubMed  PubMed Central  Google Scholar 

  80. de Hoyos-Vega, J. M.; Hong, H. J.; Stybayeva, G.; Revzin, A. Hepatocyte cultures: From collagen gel sandwiches to microfluidic devices with integrated biosensors. APL Bioeng. 2021, 5, 041504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Khetani, S. R.; Bhatia, S. N. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 2008, 26, 120–126.

    Article  CAS  PubMed  Google Scholar 

  82. Ploss, A.; Khetani, S. R.; Jones, C. T.; Syder, A. J.; Trehan, K.; Gaysinskaya, V. A.; Mu, K.; Ritola, K.; Rice, C. M.; Bhatia, S. N. Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures. Proc. Natl. Acad. Sci. USA 2010, 107, 3141–3145.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, D. D.; Lei, H.; Xie, X.; Zhou, L.; Zheng, P.; Cao, Y.; Zhang, Y. Self-sorting double network hydrogels with photo-definable biochemical cues as artificial synthetic extracellular matrix. Nano Res. 2022, 15, 4294–4301.

    Article  ADS  CAS  Google Scholar 

  84. Ng, S. S.; Xiong, A. M.; Nguyen, K.; Masek, M.; No, D. Y.; Elazar, M.; Shteyer, E.; Winters, M. A.; Voedisch, A.; Shaw, K. et al. Long-term culture of human liver tissue with advanced hepatic functions. JCI Insight 2017, 2, e90853.

    Article  PubMed  PubMed Central  Google Scholar 

  85. No, D. Y.; Lee, K. H.; Lee, J.; Lee, S. H. 3D liver models on a microplatform: Well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip 2015, 15, 3822–3837.

    Article  Google Scholar 

  86. Schepers, A.; Li, C. R.; Chhabra, A.; Seney, B. T.; Bhatia, S. Engineering a perfusable 3D human liver platform from iPS cells. Lab Chip 2016, 16, 2644–2653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Klaas, M.; Möll, K.; Mäemets-Allas, K.; Loog, M.; Järvekülg, M.; Jaks, V. Long-term maintenance of functional primary human hepatocytes in 3D gelatin matrices produced by solution blow spinning. Sci. Rep. 2021, 11, 20165.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim, M. H.; Kumar, S. K.; Shirahama, H.; Seo, J.; Lee, J. H.; Cho, N. J. Phenotypic regulation of liver cells in a biofunctionalized three-dimensional hydrogel platform. Integr. Biol. 2016, 8, 156–166.

    Article  Google Scholar 

  89. Ruoß, M.; Häussling, V.; Schügner, F.; Olde Damink, L. H. H.; Lee, S. M. L.; Ge, L. M.; Ehnert, S.; Nussler, A. K. A standardized collagen-based scaffold improves human hepatocyte shipment and allows metabolic studies over 10 days. Bioengineering 2018, 5, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Genové, E.; Schmitmeier, S.; Sala, A.; Borrós, S.; Bader, A.; Griffith, L. G.; Semino, C. E. Functionalized self-assembling peptide hydrogel enhance maintenance of hepatocyte activity in vitro. J. Cell. Mol. Med. 2009, 13, 3387–3397.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wu, J.; Marí-Buyé, N.; Muiños, T. F.; Borrós, S.; Favia, P.; Semino, C. E. Nanometric self-assembling peptide layers maintain adult hepatocyte phenotype in sandwich cultures. J. Nanobiotechnol. 2010, 8, 29.

    Article  CAS  Google Scholar 

  92. Stevens, K. R.; Scull, M. A.; Ramanan, V.; Fortin, C. L.; Chaturvedi, R. R.; Knouse, K. A.; Xiao, J. W.; Fung, C.; Mirabella, T.; Chen, A. X. et al. In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Sci. Transl. Med. 2017, 9, eaah5505.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Stabler, C. L.; Giraldo, J. A.; Berman, D. M.; Gattás-Asfura, K. M.; Willman, M. A.; Rabassa, A.; Geary, J.; Diaz, W.; Kenyon, N. M.; Kenyon, N. S. Transplantation of PEGylated islets enhances therapeutic efficacy in a diabetic nonhuman primate model. Am. J. Transplant. 2020, 20, 689–700.

    Article  CAS  PubMed  Google Scholar 

  94. Bose, S.; Volpatti, L. R.; Thiono, D.; Yesilyurt, V.; McGladrigan, C.; Tang, Y. Y.; Facklam, A.; Wang, A.; Jhunjhunwala, S.; Veiseh, O. et al. A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells. Nat. Biomed. Eng. 2020, 4, 814–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Coronel, M. M.; Martin, K. E.; Hunckler, M. D.; Barber, G.; O’Neill, E. B.; Medina, J. D.; Opri, E.; McClain, C. A.; Batra, L.; Weaver, J. D. et al. Immunotherapy via PD-L1-presenting biomaterials leads to long-term islet graft survival. Sci. Adv. 2020, 6, eaba5573.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Madhurakkat Perikamana, S. K.; Seale, N.; Hoque, J.; Ryu, J. H.; Kumar, V.; Shih, Y. V.; Varghese, S. Molecularly tailored interface for long-term xenogeneic cell transplantation. Adv. Funct. Mater. 2022, 32, 2108221.

    Article  CAS  Google Scholar 

  97. Hu, H. L.; Gehart, H.; Artegiani, B.; Löpez-Iglesias, C.; Dekkers, F.; Basak, O.; van Es, J.; de Sousa Lopes, S. M. C.; Begthel, H.; Korving, J. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 2018, 175, 1591–1606.e19.

    Article  CAS  PubMed  Google Scholar 

  98. Zhao, Z. X.; Chen, X. Y.; Dowbaj, A. M.; Sljukic, A.; Bratlie, K.; Lin, L. D.; Fong, E. L. S.; Balachander, G. M.; Chen, Z. W.; Soragni, A. et al. Organoids. Nat. Rev. Methods Primers 2022, 2, 94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lei, H.; Dong, L.; Li, Y.; Zhang, J. S.; Chen, H. Y.; Wu, J. H.; Zhang, Y.; Fan, Q. Y.; Xue, B.; Qin, M. et al. Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers. Nat. Commun. 2020, 11, 4032.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cao, H.; Duan, L. X.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther. 2021, 6, 426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mu, Q. F.; Cui, K. P.; Wang, Z. J.; Matsuda, T.; Cui, W.; Kato, H.; Namiki, S.; Yamazaki, T.; Frauenlob, M.; Nonoyama, T. et al. Force-triggered rapid microstructure growth on hydrogel surface for on-demand functions. Nat. Commun. 2022, 13, 6213.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Charni-Natan, M.; Goldstein, I. Protocol for primary mouse hepatocyte isolation. STAR Protoc. 2020, 1, 100086.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Key R&D Program of China (No. 2020YFA0908100); the Research Project of Jinan Microecological Biomedicine Shandong Laboratory (Nos. JNL2022004A, JNL2022019B); Shandong Provincial Laboratory Project (No. SYS202202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Cao, Chunping Jiang or Xiaosong Gu.

Electronic Supplementary Material

12274_2023_5940_MOESM1_ESM.pdf

Long-term functional maintenance of primary hepatocytes in vitro using macroporous hydrogels engineered through liquid-liquid phase separation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yin, S., Cui, J. et al. Long-term functional maintenance of primary hepatocytes in vitro using macroporous hydrogels engineered through liquid-liquid phase separation. Nano Res. 17, 1725–1736 (2024). https://doi.org/10.1007/s12274-023-5940-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5940-3

Keywords

Navigation