Skip to main content
Log in

Gas diffusion in catalyst layer of flow cell for CO2 electroreduction toward C2+ products

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The use of gas diffusion electrode (GDE) based flow cell can realize industrial-scale CO2 reduction reactions (CO2RRs). Controlling local CO2 and CO intermediate diffusion plays a key role in CO2RR toward multi-carbon (C2+) products. In this work, local CO2 and CO intermediate diffusion through the catalyst layer (CL) was investigated for improving CO2RR toward C2+ products. The gas permeability tests and finite element simulation results indicated CL can balance the CO2 gas diffusion and residence time of the CO intermediate, leading to a sufficient CO concentration with a suitable CO2/H2O supply for high C2+ products. As a result, an excellent selectivity of C2+ products ~ 79% at a high current density of 400 mA·cm−2 could be obtained on the optimal 500 nm Cu CL (Cu500). This work provides a new insight into the optimization of CO2/H2O supply and local CO concentration by controlling CL for C2+ products in CO2RR flow cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y. X.; Shen, H.; Livi, K. J. T.; Raciti, D.; Zong, H.; Gregg, J.; Onadeko, M.; Wan, Y. D.; Watson, A.; Wang, C. Copper nanocubes for CO2 reduction in gas diffusion electrodes. Nano Lett. 2019, 19, 8461–8468.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A. X.; Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 2018, 51, 910–918.

    Article  CAS  PubMed  Google Scholar 

  3. Overa, S.; Ko, B. H.; Zhao, Y. R.; Jiao, F. Electrochemical approaches for CO2 conversion to chemicals: A journey toward practical applications. Acc. Chem. Res. 2022, 55, 638–648.

    Article  CAS  PubMed  Google Scholar 

  4. Tan, X. Y.; Yu, C.; Ren, Y. W.; Cui, S.; Li, W. B.; Qiu, J. S. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ. Sci. 2021, 14, 765–780.

    Article  CAS  Google Scholar 

  5. Ju, H.; Kaur, G.; Kulkarni, A. P.; Giddey, S. Challenges and trends in developing technology for electrochemically reducing CO2 in solid polymer electrolyte membrane reactors. J. CO2Util. 2019, 32, 178–186.

    Article  CAS  Google Scholar 

  6. De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Zhou, Y. J.; Liang, Y. Q.; Fu, J. W.; Liu, K.; Chen, Q.; Wang, X. Q.; Li, H. M.; Zhu, L.; Hu, J. H.; Pan, H. et al. Vertical Cu nanoneedle arrays enhance the local electric field promoting C2 hydrocarbons in the CO2 electroreduction. Nano Lett. 2022, 22, 1963–1970.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Zhou, Y. J.; Ni, G. H.; Wu, K. Z.; Chen, Q.; Wang, X. Q.; Zhu, W. W.; He, Z.; Li, H. M.; Fu, J. W.; Liu, M. Porous Zn conformal coating on dendritic-like Ag with enhanced selectivity and stability for CO2 electroreduction to CO. Adv. Sustain. Syst. 2023, 7, 2200374.

    Article  CAS  Google Scholar 

  9. Zhu, L.; Lin, Y. Y.; Liu, K.; Cortés, E.; Li, H. M.; Hu, J. H.; Yamaguchi, A.; Liu, X. L.; Miyauchi, M.; Fu, J. W. et al. Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products. Chin. J. Catal. 2021, 42, 1500–1508.

    Article  CAS  Google Scholar 

  10. Ma, D.; Jin, T.; Xie, K. Y.; Huang, H. T. An overview of flow cell architecture design and optimization for electrochemical CO2 reduction. J. Mater. Chem. A. 2021, 9, 20897–20918.

    Article  CAS  Google Scholar 

  11. Jones, J. P.; Prakash, G. K. S.; Olah, G. A. Electrochemical CO2 reduction: Recent advances and current trends. Isr. J. Chem. 2014, 54, 1451–1466.

    Article  CAS  Google Scholar 

  12. Salvatore, D. A.; Weekes, D. M.; He, J. F.; Dettelbach, K. E.; Li, Y. C.; Mallouk, T. E.; Berlinguette, C. P. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 2018, 3, 149–154.

    Article  CAS  Google Scholar 

  13. Liang, S. Y.; Altaf, N.; Huang, L.; Gao, Y. S.; Wang, Q. Electrolytic cell design for electrochemical CO2 reduction. J. CO2Util. 2020, 35, 90–105.

    Article  CAS  Google Scholar 

  14. Kuo, L. K.; Dinh, C. T. Toward efficient catalysts for electrochemical CO2 conversion to C2 poouucts. Curr. Opin. Electrochem. 2021, 30, 100807.

    Article  CAS  Google Scholar 

  15. Park, S.; Wijaya, D. T.; Na, J.; Lee, C. W. Towards the large-scale electrochemical reduction of carbon dioxide. Catalytts 2021, 11, 253.

    Article  CAS  Google Scholar 

  16. Xie, Y.; Ou, P. F.; Wang, X.; Xu, Z. Y.; Li, Y. C.; Wang, Z. Y.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 2022, 5, 564–570.

    Article  CAS  Google Scholar 

  17. Wakerley, D.; Lamaison, S.; Wicks, J.; Clemens, A.; Feaster, J.; Corral, D.; Jaffer, S. A.; Sarkar, A.; Fontecave, M.; Duoss, E. B. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy. 2022, 7, 130–143.

    Article  ADS  CAS  Google Scholar 

  18. Yang, Y.; Li, F. W. Reactor design for electrochemical CO2 conversion toward large-scale applications. Curr. Opin. Green Sustain. Chem. 2021, 27, 100419.

    Article  CAS  Google Scholar 

  19. Li, L.; Liu, Z. Y.; Yu, X. H.; Zhong, M. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew. Chem., Int. Ed. 2023, 62, e202300226.

    Article  CAS  Google Scholar 

  20. Zhang, J.; Guo, C. X.; Fang, S. S.; Zhao, X. T.; Li, L.; Jiang, H. Y.; Liu, Z. Y.; Fan, Z. Q.; Xu, W. G.; Xiao, J. P. et al. Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces. Nat. Commun. 2023, 14, 1298.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

    Article  CAS  PubMed  Google Scholar 

  22. Chang, Y. B.; Zhang, C.; Lu, X. L.; Zhang, W.; Lu, T. B. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. Nano Res. 2022, 15, 195–201.

    Article  ADS  CAS  Google Scholar 

  23. Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.

    Article  ADS  CAS  Google Scholar 

  24. Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy. 2022, 1, e9120021.

    Article  Google Scholar 

  25. Wang, X. Q.; Chen, Q.; Zhou, Y. J.; Li, H. M.; Fu, J. W.; Liu, M. Cu-based bimetallic catalysts for CO2 reduction reaction. Adv. Sensor Energy Mater. 2022, 1, 100023.

    Article  Google Scholar 

  26. Duong, H. P.; Tran, N. H.; Rousse, G.; Zanna, S.; Schreiber, M. W.; Fontecave, M. Highly selective copper-based Catalysts for electrochemical conversion of carbon monoxide to ethylene using a gas-fed flow electrolyzer. ACS Catal. 2022, 12, 10285–10293.

    Article  CAS  Google Scholar 

  27. Ozden, A.; Wang, Y. H.; Li, F. W.; Luo, M. C.; Sisler, J.; Thevenon, A.; Rosas-Hernández, A.; Burdyny, T.; Lum, Y.; Yadegari, H. et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule. 2021, 5, 706–719.

    Article  CAS  Google Scholar 

  28. Sisler, J.; Khan, S.; Ip, A. H.; Schreiber, M. W.; Jaffer, S. A.; Bobicki, E. R.; Dinh, C. T.; Sargent, E. H. Ethylene electrosynthesis: A comparative techno-economic analysis of alkaline vs. membrane electrode assembly vs. CO2-CO-C2H4 tandems. ACS Energy Lett. 2021, 6, 997–1002.

    Article  ADS  CAS  Google Scholar 

  29. Dinh, C. T.; Burdyny, T.; Kibria, G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

    Article  CAS  PubMed  Google Scholar 

  30. Firouzjaie, H. A.; Mustain, W. E. Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells. ACS Catal. 2020, 10, 225–234.

    Article  CAS  Google Scholar 

  31. Ma, M.; Clark, E. L.; Therkildsen, K. T.; Dalsgaard, S.; Chorkendorff, I.; Seger, B. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 2020, 13, 977–985.

    Article  CAS  Google Scholar 

  32. Rabiee, H.; Ge, L.; Zhang, X. Q.; Hu, S. H.; Li, M. R.; Yuan, Z. G. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: A review. Energy Environ. Sci. 2021, 14, 1959–2008.

    Article  CAS  Google Scholar 

  33. Wang, Q. Y.; Liu, K.; Fu, J. W.; Cai, C.; Li, H. J. W.; Long, Y.; Chen, S. Y.; Liu, B.; Li, H. M.; Li, W. Z. et al. Atomically dispersed s-block magnesium sites for electroreduction of CO2 to CO. Angew. Chem., Int. Ed. 2021, 60, 25241–25245.

    Article  CAS  Google Scholar 

  34. Chen, K. J.; Cao, M. Q.; Lin, Y. Y.; Fu, J. W.; Liao, H. X.; Zhou, Y. J.; Li, H. M.; Qiu, X. Q.; Hu, J. H.; Zheng, X. S. et al. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv. Funct. Mater. 2022, 32, 2111322.

    Article  CAS  Google Scholar 

  35. Bondue, C. J.; Graf, M.; Goyal, A.; Koper, M. T. M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. J. Am. Chem. Soc. 2021, 143, 279–285.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Q.; Liu, K.; Zhou, Y. J.; Wang, X. Q.; Wu, K. Z.; Li, H. M.; Pensa, E.; Fu, J. W.; Miyauchi, M.; Cortés, E. et al. Ordered Ag nanoneedle arrays with enhanced electrocatalytic CO2 reduction via structure-induced inhibition of hydrogen evolution. Nano Lett. 2022, 22, 6276–6284.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Zhang, Y. J., Sethuraman, V.; Michalsky, R.; Peterson, A. A. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 2014, 4, 3742–3748.

    Article  CAS  Google Scholar 

  38. Wu, Y. M.; Garg, S.; Li, M. R.; Idros, M. N.; Li, Z. H.; Lin, R. J.; Chen, J.; Wang, G. X.; Rufford, T. E. Effects of microporous layer on electrolyte flooding in gas diffusion electrodes and selectivity of CO2 electrolysis to CO. J. Power Sources 2022, 522, 230998.

    Article  CAS  Google Scholar 

  39. Kong, X. D.; Wang, C.; Xu, Z. F.; Zhong, Y. Z.; Liu, Y.; Qin, L.; Zeng, J.; Geng, Z. G. Enhancing CO2 electroreduction selectivity toward multicarbon products via tuning the local H2O/CO2 molar ratio. Nano Lett. 2022, 22, 8000–8007.

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Zhang, T. Y.; Bui, J. C.; Li, Z. Y.; Bell, A. T.; Weber, A. Z.; Wu, J. J. Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. Nat. Catal. 2022, 5, 202–211.

    Article  CAS  Google Scholar 

  41. Ling, P. Q.; Liu, Y. H.; Wang, Z. Q.; Li, L.; Hu, J.; Zhu, J. F.; Yan, W. S.; Jiang, H. J.; Hou, Z. H.; Sun, Y. F. et al. Surface engineering on commercial Cu foil for steering C2H4/CH4 ratio in CO2 electroreduction. Nano Lett. 2022, 22, 2988–2994.

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Ren, D.; Gao, J.; Zakeeruddin, S. M.; Grätzel, M. New insights into the interface of electrochemical flow cells for carbon dioxide reduction to ethylene. J. Phys. Chem. Lett. 2021, 12, 7583–7589.

    Article  CAS  PubMed  Google Scholar 

  43. Weng, L. C.; Bell, A. T.; Weber, A. Z. Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 2018, 20, 16973–16984.

    Article  CAS  PubMed  Google Scholar 

  44. Ge, L.; Zhu, Z. H.; Li, F.; Liu, S. M.; Wang, L.; Tang, X. G.; Rudolph, V. Investigation of gas permeability in carbon nanotube (CNT)-polymer matrix membranes via modifying CNTs with functional groups/metals and controlling modification location. J. Phys. Chem. C. 2011, 115, 6661–6670.

    Article  CAS  Google Scholar 

  45. Yeo, I.; Jung, H.; Song, T. H. Gas permeation characteristics through heat-sealed flanges of vacuum insulation panels. Vacuum. 2014, 104, 70–76.

    Article  ADS  CAS  Google Scholar 

  46. Sebők, B.; Kiss, G.; Dobos, G.; Réti, F.; Majoros, T.; Krafcsik, O. H. Novel instrument and method for the investigation of small permeation fluxes of gases through different membranes. Measurement, 2013, 46, 3516–3524.

    Article  ADS  Google Scholar 

  47. Niu, Z. Z.; Chi, L. P.; Liu, R.; Chen, Z.; Gao, M. R. Rigorous assessment of CO2 electroreduction products in a flow cell. Energy Environ. Sci. 2021, 14, 4169–4176.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully thank the National Natural Science Foundation of China (No. 22002189), Central South University Research Programme of Advanced Interdisciplinary Studies (No. 2023QYJC012), Central South University Innovation-Driven Research Program (No. 2023CXQD042), and the Fundamental Research Funds for the Central Universities of Central South University (No. 2023ZZTS0962). We are grateful for resources from High Performance Computing Center of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junwei Fu, Yifei Sun or Min Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, Q., Zhou, Y. et al. Gas diffusion in catalyst layer of flow cell for CO2 electroreduction toward C2+ products. Nano Res. 17, 1101–1106 (2024). https://doi.org/10.1007/s12274-023-5910-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5910-9

Keywords

Navigation