Skip to main content
Log in

Atomically precise alkynyl-protected Ag20Cu12 nanocluster: Structure analysis and electrocatalytic performance toward nitrate reduction for NH3 synthesis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical nitrate reduction reaction (NtrRR) has been emerging as an appealing route for both water treatment and NH3 synthesis. Herein, we report the structure analysis and electrocatalytic performance of a novel homoleptic alkynyl-protected Ag20Cu12 nanocluster (Ag20Cu12 in short) with atomic precision, which has eight free electrons and displays characteristic absorbance feature. Single crystal X-ray diffraction (SC-XRD) discloses that, it adopts a Ag14 kernel capped by three Ag2Cu4(C≡CArF)8 metal–ligand binding motifs in the outer shell. Ag20Cu12 exhibited excellent catalytic performance toward NtrRR, as manifested by the superior NH3 Faradaic efficiency (FE, 84.6%) and yield rate (0.138 mmol·h−1·mg−1) than the homoleptic alkynyl-protected Ag32 nanoclusters. Additionally, it demonstrates good catalytic recycling capability. Density functional theory (DFT) calculations revealed that, the de-ligated Ag20Cu12 cluster can expose the available AgCu bimetallic sites as the efficient active sites for NH3 formation. In particular, the participation of Cu sites greatly facilitates the initial capture of NO3 and simultaneously promotes the selectivity of the final product. This study discovers a novel homoleptic alkynyl-protected AgCu superatom, and offers a great example to elucidate the structure–performance relationship of bimetallic catalyst for NtrRR and other multiple protons/electrons coupled electrocatalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, X.; Davidson, E. A.; Mauzerall, D. L.; Searchinger, T. D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature. 2015, 528, 51–59.

    CAS  Google Scholar 

  2. Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

    CAS  Google Scholar 

  3. Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Shao, C.; Guo, Y. Z. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2008533.

    CAS  Google Scholar 

  4. Pérez-Gallent, E.; Figueiredo, M. C.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. Electrochim. Acta. 2017, 227, 77–84.

    Google Scholar 

  5. Wang, Z. C.; Liu, S. S.; Zhao, X. Y.; Wang, M. F.; Zhang, L. F.; Qian, T.; Xiong, J.; Yang, C. T.; Yan, C. L. Interfacial defect engineering triggered by single atom doping for highly efficient electrocatalytic nitrate reduction to ammonia. ACS Mater. Lett. 2023, 5, 1018–1026.

    CAS  Google Scholar 

  6. Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science. 2018, 360, eaar6611.

    Google Scholar 

  7. Chu, K.; Liu, Y. P.; Li, Y. B.; Guo, Y. L.; Tian, Y.; Zhang, H. Multifunctional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation. Appl. Catal. B:Environ. 2020, 264, 118525.

    CAS  Google Scholar 

  8. Liu, S. S.; Qian, T.; Wang, M. F.; Ji, H. Q.; Shen, X. W.; Wang, C.; Yan, C. L. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 2021, 4, 322–331.

    CAS  Google Scholar 

  9. He, Y. Z.; Wang, M. F.; Liu, S. S.; Zhang, L. F.; Cheng, Q. Y.; Yan, C. L.; Qian, T. A superaerophilic gas diffusion electrode enabling facilitated nitrogen feeding through hierarchical micro/nano channels for efficient ambient synthesis of ammonia. Chem. Eng. J. 2023, 454, 140106.

    CAS  Google Scholar 

  10. Crawford, J.; Yin, H. Q.; Du, A. J.; O’Mullane, A. P. Nitrate-to-ammonia conversion at an InSn-enriched liquid-metal electrode. Angew. Chem., Int. Ed. 2022, 61, e202201604.

    CAS  Google Scholar 

  11. Jiang, C. S.; Zhang, M. Y.; Dong, G. J.; Wei, T.; Feng, J.; Ren, Y. M.; Luan, T. Z. Photocatalytic nitrate reduction by a non-metal catalyst h-BN: Performance and mechanism. Chem. Eng. J. 2022, 429, 132216.

    CAS  Google Scholar 

  12. Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy. 2020, 5, 605–613.

    CAS  Google Scholar 

  13. Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

    CAS  Google Scholar 

  14. Wang, J.; Wang, Y. A.; Cai, C.; Liu, Y. S.; Wu, D. J.; Wang, M. Y.; Li, M. H.; Wei, X. B.; Shao, M. H.; Gu, M. Cu-doped iron oxide for the efficient electrocatalytic nitrate reduction reaction. Nano Lett. 2023, 23, 1897–1903.

    CAS  Google Scholar 

  15. Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

    CAS  Google Scholar 

  16. Wang, Y. T.; Li, H. J.; Zhou, W.; Zhang, X.; Zhang, B.; Yu, Y. F. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angew. Chem., Int. Ed. 2022, 61, e202202604.

    CAS  Google Scholar 

  17. Huang, B.; Kobayashi, H.; Yamamoto, T.; Matsumura, S.; Nishida, Y.; Sato, K.; Nagaoka, K.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Solid-solution alloying of immiscible Ru and Cu with enhanced CO oxidation activity. J. Am. Chem. Soc. 2017, 139, 4643–4646.

    CAS  Google Scholar 

  18. Butcher, D. P.; Gewirth, A. A. Nitrate reduction pathways on Cu single crystal surfaces: Effect of oxide and Cl. Nano Energy. 2016, 29, 457–465.

    CAS  Google Scholar 

  19. Hu, Q.; Qin, Y. J.; Wang, X. D.; Wang, Z. Y.; Huang, X. W.; Zheng, H. J.; Gao, K. R.; Yang, H. P.; Zhang, P. X.; Shao, M. H. et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ. Sci. 2021, 14, 4989–4997.

    CAS  Google Scholar 

  20. Gao, W. S.; Xie, K. F.; Xie, J.; Wang, X. M.; Zhang, H.; Chen, S. Q.; Wang, H.; Li, Z. L.; Li, C. Alloying of Cu with Ru enabling the relay catalysis for reduction of nitrate to ammonia. Adv. Mater. 2023, 35, e2202952.

    Google Scholar 

  21. Ren, T. L.; Sheng, Y. W.; Wang, M. Z.; Ren, K. L.; Wang, L. L.; Xu, Y. Recent advances of Cu-based materials for electrochemical nitrate reduction to ammonia. Chin. J. Struct. Chem. 2022, 41, 2212089–2212106.

    CAS  Google Scholar 

  22. Wang, Y. M.; Peng, Z. W.; Liao, J. M.; Li, A.; Liu, Y. Y.; Zhang, J. J.; Zhou, N. A.; Li, X. D.; Li, S.; Meng, W. A new heterometallic 3d-3d transition metal Oxo-cluster {CuII6MnIII}: Synthesis, crystal structure and magnetic property. Chin. J. Struct. Chem. 2021, 40, 1661–1667.

    CAS  Google Scholar 

  23. Fu, X. B.; Zhao, X. G.; Hu, X. B.; He, K.; Yu, Y. A.; Li, T.; Tu, Q.; Qian, X.; Yue, Q.; Wasielewski, M. R. et al. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Appl. Mater. Today. 2020, 19, 100620.

    Google Scholar 

  24. Xue, Y. H.; Yu, Q. H.; Ma, Q.; Chen, Y. Y.; Zhang, C. N.; Teng, W.; Fan, J. W.; Zhang, W. X. Electrocatalytic hydrogenation boosts reduction of nitrate to ammonia over single-atom Cu with Cu(I)-N3C1 sites. Environ. Sci. Technol. 2022, 56, 14797–14807.

    CAS  Google Scholar 

  25. Lijinsky, W.; Greenblatt, M. Carcinogen dimethylnitrosamine produced in vivo from nitrite and aminopyrine. Nat. New Biol. 1972, 236, 177–178.

    CAS  Google Scholar 

  26. Simpson, B. K.; Johnson, D. C. Electrocatalysis of nitrate reduction at copper-nickel alloy electrodes in acidic media. Electroanal. 2004, 16, 532–538.

    CAS  Google Scholar 

  27. Gao, Q.; Yao, B. Q.; Pillai, H. S.; Zang, W. J.; Han, X.; Liu, Y. Q.; Yu, S. W.; Yan, Z. H.; Min, B.; Zhang, S. et al. Synthesis of core/shell nanocrystals with ordered intermetallic single-atom alloy layers for nitrate electroreduction to ammonia. Nat. Synth., in press, https://doi.org/10.1038/s44160-023-00258-x.

  28. Wu, D. S.; Cao, M. N. Homogeneous and complex catalysts. Nat. Synth., in press, https://doi.org/10.1038/s44160-023-00299-2.

  29. Gao, Q.; Pillai, H. S.; Huang, Y.; Liu, S. K.; Mu, Q. M.; Han, X.; Yan, Z. H.; Zhou, H.; He, Q.; Xin, H. L. et al. Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nat. Commun. 2022, 13, 2338.

    CAS  Google Scholar 

  30. Cerrón-Calle, G. A.; Fajardo, A. S.; Sánchez-Sánchez, C. M.; Garcia-Segura, S. Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Appl. Catal. B:Environ. 2022, 302, 120844.

    Google Scholar 

  31. Qin, L. B.; Sun, F.; Ma, X. S.; Ma, G. Y.; Tang, Y.; Wang, L. K.; Tang, Q.; Jin, R. C.; Tang, Z. H. Homoleptic alkynyl-protected Ag15 nanocluster with atomic precision: Structural analysis and electrocatalytic performance toward CO2 reduction. Angew. Chem. Int. Ed. 2021, 60, 26136–26141.

    CAS  Google Scholar 

  32. Ma, X. S.; Xiong, L.; Qin, L. B.; Tang, Y.; Ma, G. Y.; Pei, Y.; Tang, Z. H. A homoleptic alkynyl-protected [Ag9Cu6(tBuC≡C)12]+ superatom with free electrons: Synthesis, structure analysis, and different properties compared with the Au7Ag8 cluster in the M15+ series. Chem. Sci. 2021, 12, 12819–12826.

    Google Scholar 

  33. Yuan, S. F.; Guan, Z. J.; Liu, W. D.; Wang, Q. M. Solvent-triggered reversible interconversion of all-nitrogen-donor-protected silver nanoclusters and their responsive optical properties. Nat. Commun. 2019, 10, 4032.

    Google Scholar 

  34. Wang, Y. M.; Cai, J. M.; Wang, Q. Y.; Li, Y.; Han, Z.; Li, S.; Gong, C. H.; Wang, S.; Zang, S. Q.; Mak, T. C. W. Electropolymerization of metal clusters establishing a versatile platform for enhanced catalysis performance. Angew. Chem., Int. Ed. 2022, 61, e202114538.

    CAS  Google Scholar 

  35. Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

    CAS  Google Scholar 

  36. Han, M.; Guo, M. H.; Yun, Y. P.; Xu, Y. J.; Sheng, H. T.; Chen, Y. X.; Du, Y. X.; Ni, K.; Zhu, Y. W.; Zhu, M. Z. Effect of heteroatom and charge reconstruction in atomically precise metal nanoclusters on electrochemical synthesis of ammonia. Adv. Funct. Mater. 2022, 32, 2202820.

    CAS  Google Scholar 

  37. Liu, L. J.; Zhang, J. W.; Asad, M.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. A high-nuclearity CuI/CuII nanocluster catalyst for phenol degradation. Chem. Commun. 2021, 57, 5586–5589.

    CAS  Google Scholar 

  38. Wang, Y.; Wan, X. K.; Ren, L. T.; Su, H. F.; Li, G.; Malola, S.; Lin, S. C.; Tang, Z. C.; Häkkinen, H.; Teo, B. K. et al. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: Observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 2016, 138, 3278–3281.

    CAS  Google Scholar 

  39. Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

    CAS  Google Scholar 

  40. Wang, Q. M.; Lin, Y. M.; Liu, K. G. Role of anions associated with the formation and properties of silver clusters. Acc. Chem. Res. 2015, 48, 1570–1579.

    CAS  Google Scholar 

  41. Ma, X. S.; Ma, G. Y.; Qin, L. B.; Chen, G. X.; Chen, S. W.; Tang, Z. H. A synchronous nucleation and passivation strategy for controllable synthesis of Au36(PA)24: Unveiling the formation process and the role of Au22(PA)18 intermediate. Sci. China Chem. 2020, 63, 1777–1784.

    CAS  Google Scholar 

  42. Chen, L. Y.; Sun, F.; Shen, Q. L.; Qin, L. B.; Liu, Y. G.; Qiao, L.; Tang, Q.; Wang, L. K.; Tang, Z. H. Homoleptic alkynyl-protected Ag32 nanocluster with atomic precision: Probing the ligand effect toward CO2 electroreduction and 4-nitrophenol reduction. Nano Res. 2022, 15, 8908–8913.

    CAS  Google Scholar 

  43. Gao, X. H.; He, S. J.; Zhang, C. M.; Du, C.; Chen, X.; Xing, W.; Chen, S. L.; Clayborne, A.; Chen, W. Single crystal sub-nanometer sized Cu6(SR)6 clusters: Structure, photophysical properties, and electrochemical sensing. Adv. Sci. 2016, 3, 1600126.

    Google Scholar 

  44. Wu, X. H.; Guo, Y. N.; Sun, Z. S.; Xie, F. H.; Guan, D. Q.; Dai, J.; Yu, F. J.; Hu, Z. W.; Huang, Y. C.; Pao, C. W. et al. Fast operando spectroscopy tracking in situ generation of rich defects in silver nanocrystals for highly selective electrochemical CO2 reduction. Nat. Commun. 2021, 12, 660.

    CAS  Google Scholar 

  45. Kumari, G.; Zhang, X. Q.; Devasia, D.; Heo, J.; Jain, P. K. Watching visible light-driven CO2 reduction on a plasmonic nanoparticle catalyst. ACS Nano. 2018, 12, 8330–8340.

    CAS  Google Scholar 

  46. Li, J. L.; Li, H.; Yu, H. Z.; Chai, J. S.; Li, Q. Z.; Song, Y. B.; Zhang, Z. J.; Zhu, M. Z. A novel geometric structure of a nanocluster with an irregular kernel: Ag30Cu14(TPP)4(SR)28. Dalton Trans. 2020, 49, 7684–7687.

    CAS  Google Scholar 

  47. Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

    Google Scholar 

  48. Sun, W. J.; Ji, H. Q.; Li, L. X.; Zhang, H. Y.; Wang, Z. K.; He, J. H.; Lu, J. M. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew. Chem., Int. Ed. 2021, 60, 22933–22939.

    CAS  Google Scholar 

Download references

Acknowledgements

Z. H. T. acknowledges the financial support from the Guangdong Natural Science Funds (No. 2022A1515011840). Q. T. thanks the grants from the National Natural Science Foundation of China (No. 21903008) and the Chongqing Science and Technology Commission (No. cstc2020jcyj-msxmX0382).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Tang or Zhenghua Tang.

Electronic Supplementary Material

Supplementary material, approximately 13.7 MB.

12274_2023_5885_MOESM2_ESM.pdf

Atomically precise alkynyl-protected Ag20Cu12 nanocluster: Structure analysis and electrocatalytic performance toward nitrate reduction for NH3 synthesis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Sun, F., Qiao, L. et al. Atomically precise alkynyl-protected Ag20Cu12 nanocluster: Structure analysis and electrocatalytic performance toward nitrate reduction for NH3 synthesis. Nano Res. 16, 10867–10872 (2023). https://doi.org/10.1007/s12274-023-5885-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5885-6

Keywords

Navigation