Skip to main content
Log in

Early initiation of ARBs without blood pressure risk via neutrophil membrane-fused pH-sensitive liposomes to reduce cardiomyocyte apoptosis after acute myocardial infarction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Activation of the local renin–angiotensin system (RAS) promotes cardiomyocyte apoptosis and cardiac remodeling after acute myocardial infarction (AMI). As an anti-RAS drug, the effect of Valsartan in the early stage of acute MI is limited by its low drug concentration in the heart and low dosage. Here, by exploiting the inherent nature of neutrophils migrating to the injured myocardium and the local low-pH microenvironment caused by ischemia and hypoxia after myocardial infarction, we designed nanocarrier (NSLP)-hybridized neutrophil membranes and pH-sensitive liposomes (SLPs) for the delivery of Valsartan (NSLP-Val). These functional nanocarriers could mimic neutrophils and are homed to the injured heart; they were also found to respond to a low-pH microenvironment. In the mouse model of MI, we found that NSLP-Val could target the infarct marginal zone and release Valsartan locally in the low-pH microenvironment without affecting hemodynamic stability. Further, locally released angiotensin receptor inhibitors reduced the infarct size and inflammatory response by inhibiting cardiomyocytes. Ultimately, NSLP-Val improved cardiac function and inhibited cardiac hypertrophy and fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet 2015, 385, 117–171.

    Google Scholar 

  2. Ziaeian, B.; Fonarow, G. C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 2016, 13, 368–378.

    Google Scholar 

  3. Lang, C. C.; Struthers, A. D. Targeting the renin-angiotensin-aldosterone system in heart failure. Nat. Rev. Cardiol. 2013, 10, 125–134.

    CAS  Google Scholar 

  4. ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. ISIS-4:. A randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58 050 patients with suspected acute myocardial infarction.. Lancet 1995, 345, 669–685.

    Google Scholar 

  5. Pfeffer, M. A.; McMurray, J. J. V.; Velazquez, E. J.; Rouleau, J. L.; Køber, L.; Maggioni, A. P.; Solomon, S. D.; Swedberg, K.; Van de Werf, F.; White, H. et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N. Eng. J. Med. 2003, 349, 1893–1906.

    CAS  Google Scholar 

  6. Chinese Cardiac Study Collaborative Group. Oral captopril versus placebo among 13 634 patients with suspected acute myocardial infarction: Interim report from the Chinese Cardiac Study (CCS-1). Lancet 1995, 345, 686–687.

    Google Scholar 

  7. Miller, L.; Birks, E.; Guglin, M.; Lamba, H.; Frazier, O. H. Use of ventricular assist devices and heart transplantation for advanced heart failure. Circ. Res. 2019, 124, 1658–1678.

    CAS  Google Scholar 

  8. Forrester, S. J.; Booz, G. W.; Sigmund, C. D.; Coffman, T. M.; Kawai, T.; Rizzo, V.; Scalia, R.; Eguchi, S. Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology. Physiol. Rev. 2018, 98, 1627–1738.

    CAS  Google Scholar 

  9. Danser, A. H. J. Cardiac angiotensin II: Does it have a function. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1304–H1306.

    CAS  Google Scholar 

  10. Oyamada, S.; Bianchi, C.; Takai, S.; Robich, M. P.; Clements, R. T.; Chu, L.; Sellke, F. W. Impact of acute myocardial ischemia reperfusion on the tissue and blood-borne renin-angiotensin system. Basic. Res. Cardiol. 2010, 105, 513–522.

    CAS  Google Scholar 

  11. Kumar, R.; Singh, V. P.; Baker, K. M. The intracellular renin-angiotensin system in the heart. Curr. Hypertens. Rep. 2009, 11, 104–110.

    CAS  Google Scholar 

  12. Te Riet, L.; van Esch, J. H. M.; Roks, A. J. M.; van den Meiracker, A. H.; Danser, A. H. J. Hypertension: Renin-angiotensin-aldosterone system alterations. Circ. Res. 2015, 116, 960–975.

    CAS  Google Scholar 

  13. Becari, C.; Silva, M. A. B.; Durand, M. T.; Prado, C. M.; Oliveira, E. B.; Ribeiro, M. S.; Salgado, H. C.; Salgado, M. C. O.; Tostes, R. C. Elastase-2, an angiotensin II-generating enzyme, contributes to increased angiotensin II in resistance arteries of mice with myocardial infarction. Br. J. Pharmacol. 2017, 174, 1104–1115.

    CAS  Google Scholar 

  14. Jin, D.; Takai, S.; Yamada, M.; Sakaguchi, M.; Yao, Y.; Miyazaki, M. Possible roles of cardiac chymase after myocardial infarction in hamster hearts. Jpn. J. Pharmacol. 2001, 86, 203–214.

    CAS  Google Scholar 

  15. Jin, D.; Takai, S.; Yamada, M.; Sakaguchi, M.; Kamoshita, K.; Ishida, K.; Sukenaga, Y.; Miyazaki, M. Impact of chymase inhibitor on cardiac function and survival after myocardial infarction. Cardiovasc. Res. 2003, 60, 413–420.

    CAS  Google Scholar 

  16. Sun, Y. Intracardiac renin-angiotensin system and myocardial repair/remodeling following infarction. J. Mol. Cell Cardiol. 2010, 48, 483–489.

    CAS  Google Scholar 

  17. Yamagishi, H.; Kim, S.; Nishikimi, T.; Takeuchi, K.; Takeda, T. Contribution of cardiac renin-angiotensin system to ventricular remodelling in myocardial-infarcted rats. J. Mol. Cell Cardiol. 1993, 25, 1369–1380.

    CAS  Google Scholar 

  18. Passier, R. C.; Smits, J. F.; Verluyten, M. J.; Daemen, M. J. Expression and localization of renin and angiotensinogen in rat heart after myocardial infarction. Am. J. Physiol. 1996, 271, H1040–H1048.

    CAS  Google Scholar 

  19. Chen, B. H.; Lu, D.; Fu, Y. J.; Zhang, J. W.; Huang, X. B.; Cao, S. P.; Xu, D. L.; Bin, J.; Kitakaze, M.; Huang, Q. B. et al. Olmesartan prevents cardiac rupture in mice with myocardial infarction by modulating growth differentiation factor 15 and p53. Br. J. Pharmacol. 2014, 171, 3741–3753.

    CAS  Google Scholar 

  20. Wu, B.; Lin, R.; Dai, R. Z.; Chen, C. B.; Wu, H. Y.; Hong, M. M. Valsartan attenuates oxidative stress and NF-κB activation and reduces myocardial apoptosis after ischemia and reperfusion. Eur. J. Pharmacol. 2013, 705, 140–147.

    CAS  Google Scholar 

  21. O’Gara, P. T.; Kushner, F. G.; Ascheim, D. D.; Casey, D. E. Jr.; Chung, M. K.; de Lemos, J. A.; Ettinger, S. M.; Fang, J. C.; Fesmire, F. M.; Franklin, B. A. et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: A report of the American college of cardiology foundation/American heart association task force on practice guidelines. Circulation 2013, 127, e362–e425.

    Google Scholar 

  22. Amsterdam, E. A.; Wenger, N. K.; Brindis, R. G.; Casey, D. E. Jr.; Ganiats, T. G.; Holmes, D. R. Jr.; Jaffe, A. S.; Jneid, H.; Kelly, R. F.; Kontos, M. C. et al. 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary Syndromes: A report of the American college of cardiology/American heart association task force on practice guidelines. J. Am. Coll. Cardiol. 2014, 64, e139–e228.

    Google Scholar 

  23. Collet, J. P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D. L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T. et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart. J. 2021, 42, 1289–1367.

    Google Scholar 

  24. Ibanez, B.; James, S.; Agewall, S.; Antunes, M. J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A. L. P.; Crea, F.; Goudevenos, J. A.; Halvorsen, S. et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European society of cardiology (ESC). Eur. Heart J. 2018, 39, 119–177.

    Google Scholar 

  25. Fang, R. H.; Kroll, A. V.; Gao, W. W.; Zhang, L. F. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30, e1706759.

    Google Scholar 

  26. Chen, J.; Song, Y. N.; Wang, Q. Z.; Li, Q. Y.; Tan, H. P.; Gao, J. F.; Zhang, N.; Weng, X. Y.; Sun, D. L.; Yakufu, W. et al. Targeted neutrophil-mimetic liposomes promote cardiac repair by adsorbing proinflammatory cytokines and regulating the immune microenvironment. J. Nanobiotechnol. 2022, 20, 218.

    CAS  Google Scholar 

  27. Li, Q. Y.; Huang, Z. Y.; Wang, Q. Z.; Gao, J. F.; Chen, J.; Tan, H. P.; Li, S.; Wang, Z. M.; Weng, X. Y.; Yang, H. B. et al. Targeted immunomodulation therapy for cardiac repair by platelet membrane engineering extracellular vesicles via hitching peripheral monocytes. Biomaterials 2022, 284, 121529.

    CAS  Google Scholar 

  28. Tan, H. P.; Song, Y.; Chen, J.; Zhang, N.; Wang, Q. Z.; Li, Q. Y.; Gao, J. F.; Yang, H. B.; Dong, Z.; Weng, X. Y. et al. Platelet-like fusogenic liposome-mediated targeting delivery of miR-21 improves myocardial remodeling by reprogramming macrophages post myocardial ischemia-reperfusion injury. Adv. Sci. 2021, 8, e2100787.

    Google Scholar 

  29. Zhang, N.; Song, Y. N.; Huang, Z. Y.; Chen, J.; Tan, H. P.; Yang, H. B.; Fan, M. K.; Li, Q. Y.; Wang, Q. Z.; Gao, J. F. et al. Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model. Biomaterials 2020, 255, 120168.

    CAS  Google Scholar 

  30. Wang, Q. Z.; Song, Y. N.; Chen, J.; Li, Q. Y.; Gao, J. F.; Tan, H. P.; Zhu, Y. F.; Wang, Z. M.; Li, M. H.; Yang, H. B. et al. Direct in vivo reprogramming with non-viral sequential targeting nanoparticles promotes cardiac regeneration. Biomaterials 2021, 276, 121028.

    CAS  Google Scholar 

  31. Gao, J. F.; Song, Y. N.; Wang, Q. Z.; Chen, J.; Li, Q. Y.; Tan, H. P.; Yakufu, W.; Zhang, N.; Li, S.; Zhang, J. Y. et al. Precisely co-delivery of protein and ROS scavenger with platesomes for enhanced endothelial barrier preservation against myocardial ischemia reperfusion injury. Chem. Eng. J. 2022, 446, 136960.

    CAS  Google Scholar 

  32. Mosca, T.; Forte, W. C. N. Comparative efficiency and impact on the activity of blood neutrophils isolated by percoll, ficoll and spontaneous sedimentation methods. Immunol. Invest. 2016, 45, 29–37.

    CAS  Google Scholar 

  33. Ackers-Johnson, M.; Li, P. Y.; Holmes, A. P.; O’Brien, S. M.; Pavlovic, D.; Foo, R. S. A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ. Res. 2016, 119, 909–920.

    CAS  Google Scholar 

  34. De Mello, W. C.; Danser, A. H. Angiotensin II and the heart: On the intracrine renin-angiotensin system. Hypertention 2000, 35, 1183–1188.

    CAS  Google Scholar 

  35. van Kats, J. P.; Danser, A. H.; van Meegen, J. R.; Sassen, L. M.; Verdouw, P. D.; Schalekamp, M. A. Angiotensin production by the heart: A quantitative study in pigs with the use of radiolabeled angiotensin infusions. Circulation 1998, 98, 73–81.

    CAS  Google Scholar 

  36. Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of local renin-angiotensin systems. Physiol. Rev. 2006, 86, 747–803.

    CAS  Google Scholar 

  37. Huang, C. Y.; Kuo, W. W.; Yeh, Y. L.; Ho, T. J.; Lin, J. Y.; Lin, D. Y.; Chu, C. H.; Tsai, F. J.; Tsai, C. H.; Huang, C. Y. ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation. Cell Death Differ. 2014, 21, 1262–1274.

    CAS  Google Scholar 

  38. Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D. L.; Coca, A.; de Simone, G.; Dominiczak, A. et al. 2018 ESC/ESH guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European society of cardiology (ESC) and the European society of hypertension (ESH). Eur. Heart J. 2018, 39, 3021–3104.

    Google Scholar 

  39. Yan, G. X.; Kléber, A. G. Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle. Circ. Res. 1992, 71, 460–470.

    CAS  Google Scholar 

  40. Kahlon, T.; Carlisle, S.; Otero Mostacero, D.; Williams, N.; Trainor, P.; DeFilippis, A. P. Angiotensinogen: More than its downstream products: Evidence from population studies and novel therapeutics. JACC Heart Fail. 2022, 10, 699–713.

    Google Scholar 

  41. Torrado, J.; Cain, C.; Mauro, A. G.; Romeo, F.; Ockaili, R.; Chau, V. Q.; Nestler, J. A.; Devarakonda, T.; Ghosh, S.; Das, A. et al. Sacubitril/valsartan averts adverse post-infarction ventricular remodeling and preserves systolic function in rabbits. J. Am. Coll. Cardiol. 2018, 72, 2342–2356.

    CAS  Google Scholar 

  42. Ishii, M.; Kaikita, K.; Sato, K.; Sueta, D.; Fujisue, K.; Arima, Y.; Oimatsu, Y.; Mitsuse, T.; Onoue, Y.; Araki, S. et al. Cardioprotective Effects of LCZ696 (Sacubitril/valsartan) after experimental acute myocardial infarction. JACC Basic Transl. Sci. 2017, 2, 655–668.

    Google Scholar 

  43. Levine, G. N.; Bates, E. R.; Blankenship, J. C.; Bailey, S. R.; Bittl, J. A.; Cercek, B.; Chambers, C. E.; Ellis, S. G.; Guyton, R. A.; Hollenberg, S. M. et al. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction:An update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. J. Am. Coll. Cardiol. 2016, 67, 1235–1250.

    Google Scholar 

Download references

Acknowledgements

The authors thank the Shiyanjia Lab (https://www.shiyanjia.com) for TEM measurements. The authors are grateful to Ms. Xiao Guo at the Joint Live Small Animal Imaging Laboratory of Fudan University Shanghai Medical College-PerkinElmer Company, for her technical support with the use of the in vivo imaging system. This work was financially supported by the National Key Research and Development Program of China (No. 2016YFC1301200), the National Natural Science Foundation of China (Nos. 82070281, 81870269, and 82170524), and Shanghai Clinical Research Center for Interventional Medicine (No. 19MC1910300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qibing Wang, Zheyong Huang or Junbo Ge.

Electronic Supplementary Material

12274_2023_5846_MOESM1_ESM.pdf

Early initiation of ARBs without blood pressure risk via neutrophil membrane-fused pH-sensitive liposomes to reduce cardiomyocyte apoptosis after acute myocardial infarction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Yakufu, W., Yang, H. et al. Early initiation of ARBs without blood pressure risk via neutrophil membrane-fused pH-sensitive liposomes to reduce cardiomyocyte apoptosis after acute myocardial infarction. Nano Res. 16, 9894–9905 (2023). https://doi.org/10.1007/s12274-023-5846-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5846-0

Keywords

Navigation