Skip to main content
Log in

Highly sensitive humidity sensors based on hexagonal boron nitride nanosheets for contactless sensing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Humidity sensors with high sensitivity, rapid response, and facile fabrication process for contactless sensing applications have received considerable attention in recent years. Herein, humidity sensors based on hexagonal boron nitride (h-BN) nanosheets that are synthesized by a facile ultrasonic process have been fabricated, which display an ultrahigh sensitivity of 28,384% at 85% relative humidity (RH), rapid response/recovery time (3.0/5.5 s), and long-term stability in a wide humidity detection range (11%–85% RH), superior to most of the reported humidity sensors. The high sensitivity can be ascribed to the massive hydrophilic functional groups absorbed on the h-BN nanosheet surface. Benefiting from the high humidity sensing performances, contactless Morse code messaging and human writing and speech recognition have been demonstrated. This work demonstrates the great potential of the high-performance h-BN nanosheet-based humidity sensors for future contactless sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yin, F. F.; Guo, Y. J.; Qiu, Z. C.; Niu, H. S.; Wang, W. X.; Li, Y.; Kim, E. S.; Kim, N. Y. Hybrid electronic skin combining triboelectric nanogenerator and humidity sensor for contact and non-contact sensing. Nano Energy 2022, 101, 107541.

    CAS  Google Scholar 

  2. Yang, J. H.; Shi, R. L.; Lou, Z.; Chai, R. Q.; Jiang, K.; Shen, G. Z. Flexible smart noncontact control systems with ultrasensitive humidity sensors. Small 2019, 15, 1902801.

    Google Scholar 

  3. Trung, T. Q.; Duy, L. T.; Ramasundaram, S.; Lee, N. E. Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Res. 2017, 10, 2021–2033.

    CAS  Google Scholar 

  4. Miao, L. M.; Wan, J.; Song, Y.; Guo, H.; Chen, H. T.; Cheng, X. L.; Zhang, H. X. Skin-inspired humidity and pressure sensor with a wrinkle-on-sponge structure. ACS Appl. Mater. Interfaces 2019, 11, 39219–39227.

    CAS  Google Scholar 

  5. Kim, J. S.; So, Y.; Lee, S.; Pang, C.; Park, W.; Chun, S. Uniform pressure responses for nanomaterials-based biological on-skin flexible pressure sensor array. Carbon 2021, 181, 169–176.

    CAS  Google Scholar 

  6. Meng, K. Y.; Xiao, X.; Wei, W. X.; Chen, G. R.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022, 34, 2109357.

    CAS  Google Scholar 

  7. Shin, J.; Jeong, B.; Kim, J.; Nam, V. B.; Yoon, Y.; Jung, J.; Hong, S.; Lee, H.; Eom, H.; Yeo, J. et al. Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 2020, 32, 1905527.

    CAS  Google Scholar 

  8. Zhang, H. J.; Xu, K.; Lu, Y. F.; Liu, H. D.; Han, W. Q.; Zhao, Y.; Li, R. Z.; Nie, Z. T.; Xu, F.; Zhu, J. X. et al. Robust self-gated-carriers enabling highly sensitive wearable temperature sensors. Appl. Phys. Rev. 2021, 8, 031416.

    CAS  Google Scholar 

  9. Daus, A.; Jaikissoon, M.; Khan, A. I.; Kumar, A.; Grady, R. W.; Saraswat, K. C.; Pop, E. Fast-response flexible temperature sensors with atomically thin molybdenum disulfide. Nano Lett. 2022, 22, 6135–6140.

    CAS  Google Scholar 

  10. Gu, Y. F.; Hao, J. Y.; Wu, T. C.; Zhang, Z. G.; Zhang, Z. X.; Li, Q. H. Bimetallic MoNi/WNi nanoalloys for ultra-sensitive wearable temperature sensors. J. Mater. Chem. A 2022, 10, 5402–5409.

    CAS  Google Scholar 

  11. Hu, H.; Zhang, C. Q.; Pan, C. F.; Dai, H. Z.; Sun, H. N.; Pan, Y. F.; Lai, X. Y.; Lyu, C.; Tang, D. F.; Fu, J. Z. et al. Wireless flexible magnetic tactile sensor with super-resolution in large-areas. ACS Nano 2022, 16, 19271–19280.

    CAS  Google Scholar 

  12. Park, M.; Park, Y. J.; Chen, X.; Park, Y. K.; Kim, M. S.; Ahn, J. H. MoS2-based tactile sensor for electronic skin applications. Adv. Mater. 2016, 28, 2556–2562.

    CAS  Google Scholar 

  13. Miao, P.; Wang, J.; Zhang, C. C.; Sun, M. Y.; Cheng, S. S.; Liu, H. Graphene nanostructure-based tactile sensors for electronic skin applications. Nano-Micro Lett. 2019, 11, 71.

    CAS  Google Scholar 

  14. Park, Y. J.; Sharma, B. K.; Shinde, S. M.; Kim, M. S.; Jang, B.; Kim, J. H.; Ahn, J. H. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 2019, 13, 3023–3030.

    CAS  Google Scholar 

  15. Lu, L. J.; Jiang, C. P.; Hu, G. S.; Liu, J. Q.; Yang, B. Flexible noncontact sensing for human-machine interaction. Adv. Mater. 2021, 33, 2100218.

    CAS  Google Scholar 

  16. Torres Alonso, E.; Shin, D. W.; Rajan, G.; Neves, A. I. S.; Russo, S.; Craciun, M. F. Water-based solution processing and wafer-scale integration of all-graphene humidity sensors. Adv. Sci. 2019, 6, 1802318.

    Google Scholar 

  17. Zhang, D. Z.; Zong, X. Q.; Wu, Z. L.; Zhang, Y. Ultrahighperformance impedance humidity sensor based on layer-by-layer self-assembled TiN disulfide/titanium dioxide nanohybrid film. Sens. Actuators B: Chem. 2018, 266, 52–62.

    CAS  Google Scholar 

  18. Qin, J. X.; Yang, X. G.; Lv, C. F.; Li, Y. Z.; Chen, X. X.; Zhang, Z. F.; Zang, J. H.; Yang, X.; Liu, K. K.; Dong, L. et al. Humidity sensors realized via negative photoconductivity effect in nanodiamonds. J. Phys. Chem. Lett. 2021, 12, 4079–4084.

    CAS  Google Scholar 

  19. Zhang, D. Z.; Wang, M. Y.; Tang, M. C.; Song, X. S.; Zhang, X. X.; Kang, Z. J.; Liu, X. H.; Zhang, J. H.; Xue, Q. Z. Recent progress of diversiform humidity sensors based on versatile nanomaterials and their prospective applications. Nano Res., in press, https://doi.org/10.1007/s12274-022-4917-y.

  20. Dai, J. X.; Zhao, H. R.; Lin, X. Z.; Liu, S.; Liu, Y. S.; Liu, X. P.; Fei, T.; Zhang, T. Ultrafast response polyelectrolyte humidity sensor for respiration monitoring. ACS Appl. Mater. Interfaces 2199, 11, 6483–6490.

    Google Scholar 

  21. Duan, Z. H.; Jiang, Y. D.; Yan, M. G.; Wang, S.; Yuan, Z.; Zhao, Q. N.; Sun, P.; Xie, G. Z.; Du, X. S.; Tai, H. L. Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications. ACS Appl. Mater. Interfaces 2019, 11, 21840–21849.

    CAS  Google Scholar 

  22. Cao, Q.; Yu, C.; Cheng, X. F.; Sun, W. J.; He, J. H.; Li, N. J.; Li, H.; Chen, D. Y.; Xu, Q. F.; Lu, J. M. Polysquaramides: Rapid and stable humidity sensing for breath monitoring and morse code communication. Sens. Actuators B:Chem. 2020, 320, 128390.

    CAS  Google Scholar 

  23. Burman, D.; Ghosh, R.; Santra, S.; Guha, P. K. Highly proton conducting MoS2/graphene oxide nanocomposite based chemoresistive humidity sensor. RSC Adv. 2016, 6, 57424–57433.

    CAS  Google Scholar 

  24. Burman, D.; Santra, S.; Pramanik, P.; Guha, P. K. Pt decorated MoS2 nanoflakes for ultrasensitive resistive humidity sensor. Nanotechnology 2018, 29, 115504.

    Google Scholar 

  25. Shaukat, R. A.; Khan, M. U.; Saqib, Q. M.; Chougale, M. Y.; Kim, J.; Bae, J. All range highly linear and sensitive humidity sensor based on 2D material TiSi2 for real-time monitoring. Sens. Actuators B: Chem. 2021, 345, 130371.

    CAS  Google Scholar 

  26. Wang, D. Y.; Zhang, D. Z.; Li, P.; Yang, Z. M.; Mi, Q.; Yu, L. D. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 2021, 13, 57.

    Google Scholar 

  27. Shaybanizadeh, S.; Chermahini, A. N. Fabricating boron nitride nanosheets from hexagonal BN in water solution by a combined sonication and thermal-assisted hydrolysis method. Ceram. Int. 2021, 47, 11122–11128.

    CAS  Google Scholar 

  28. Ma, Z. S.; Ding, H. L.; Liu, Z.; Cheng, Z. L. Preparation and tribological properties of hydrothermally exfoliated ultrathin hexagonal boron nitride nanosheets (BNNSs) in mixed NaOH/KOH solution. J. Alloys Compd. 2019, 784, 807–815.

    CAS  Google Scholar 

  29. Sajid, M.; Kim, H. B.; Lim, J. H.; Choi, K. H. Liquid-assisted exfoliation of 2D hBN flakes and their dispersion in PEO to fabricate highly specific and stable linear humidity sensors. J. Mater. Chem. C 2018, 6, 1421–1432.

    CAS  Google Scholar 

  30. Feng, Y.; Gong, S. J.; Du, E. W.; Yu, K.; Ren, J.; Wang, Z. G.; Zhu, Z. Q. TaS2 nanosheet-based ultrafast response and flexible humidity sensor for multifunctional applications. J. Mater. Chem. C 2019, 7, 9284–9292.

    CAS  Google Scholar 

  31. Kumar, A.; Malik, G.; Sharma, S.; Chandra, R.; Mulik, R. S. Precursors controlled morphologies of nanocrystalline h-BN and its growth mechanism. Ceram. Int. 2021, 47, 30985–30992.

    CAS  Google Scholar 

  32. Budak, E. Low temperature synthesis of hexagonal boron nitride by solid state reaction in the presence of lithium salts. Ceram. Int. 2018, 44, 13161–13164.

    CAS  Google Scholar 

  33. Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.

    CAS  Google Scholar 

  34. Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

    CAS  Google Scholar 

  35. Liang, J. L.; Song, Q. Q.; Lin, J.; Huang, Y.; Fang, Y.; Yu, C.; Xue, Y. M.; Liu, Z. Y.; Tang, C. C. Pore structure regulation and carbon dioxide adsorption capacity improvement on porous BN fibers: Effects of high-temperature treatments in gaseous ambient. Chem. Eng. J. 2019, 373, 616–623.

    CAS  Google Scholar 

  36. Mahdizadeh, A.; Farhadi, S.; Zabardasti, A. Microwave-assisted rapid synthesis of graphene-analogue hexagonal boron nitride (h-BN) nanosheets and their application for the ultrafast and selective adsorption of cationic dyes from aqueous solutions. RSC Adv. 2017, 7, 53984–53995.

    CAS  Google Scholar 

  37. Chen, C.; Wang, J. M.; Liu, D.; Yang, C.; Liu, Y. C.; Ruoff, R. S.; Lei, W. W. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nat. Commun. 2018, 9, 1902.

    Google Scholar 

  38. Liu, Z.; Gong, Y. J.; Zhou, W.; Ma, L. L.; Yu, J. J.; Idrobo, J. C.; Jung, J.; MacDonald, A. H.; Vajtai, R.; Lou, J. et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, 2541.

    Google Scholar 

  39. Li, L.; Chen, J. J.; Sheng, G. D.; Pan, Y. X.; Guo, X. J. Enhanced performance for total Cr removal using a novel h-BN supported nanoscale iron sulfide composite: Stabilization effects and removal mechanism. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 637, 128239.

    CAS  Google Scholar 

  40. He, W. H.; Wang, Y. W.; Fan, C. M.; Wang, Y. F.; Zhang, X. C.; Liu, J. X.; Li, R. Enhanced charge separation and increased oxygen vacancies of h-BN/OV-BiOCl for improved visible-light photocatalytic performance. RSC Adv. 2019, 9, 14286–14295.

    CAS  Google Scholar 

  41. Chen, N. M.; Zhu, Z. G.; Su, T.; Liao, W. P.; Deng, C. L.; Ren, W. Z.; Zhao, Y. C.; Lü, H. Y. Catalytic hydrogenolysis of hydroxymethylfurfural to highly selective 2,5-dimethylfuran over FeCoNi/h-BN catalyst. Chem. Eng. J. 2020, 381, 122755.

    CAS  Google Scholar 

  42. Wang, X. Z.; Zhang, C. H.; Chang, Q.; Wang, L. C.; Lv, B. L.; Xu, J.; Xiang, H. W.; Yang, Y.; Li, Y. W. Enhanced Fischer–Tropsch synthesis performances of Fe/h-BN catalysts by Cu and Mn. Catal. Today 2020, 343, 91–100.

    CAS  Google Scholar 

  43. Zhang, Z. F.; Lin, C. N.; Yang, X.; Zang, J. H.; Li, K. Y.; Lu, Y. C.; Li, Y. Z.; Dong, L.; Shan, C. X. Wafer-sized polycrystalline diamond photodetector planar arrays for solar-blind imaging. J. Mater. Chem. C 2022, 10, 6488–6496.

    CAS  Google Scholar 

  44. Zhang, Z. F.; Lin, C. N.; Yang, X.; Tian, Y. Z.; Gao, C. J.; Li, K. Y.; Zang, J. H.; Yang, X. G.; Dong, L.; Shan, C. X. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon 2021, 173, 427–432.

    CAS  Google Scholar 

  45. Qin, J. X.; Yang, X. G.; Shen, C. L.; Chang, Y.; Deng, Y.; Zhang, Z. F.; Liu, H.; Lv, C. F.; Li, Y. Z.; Zhang, C. et al. Carbon nanodot-based humidity sensor for self-powered respiratory monitoring. Nano Energy 2022, 101, 107549.

    CAS  Google Scholar 

  46. Yu, S. G.; Chen, C.; Zhang, H. Y.; Zhang, J.; Liu, J. Design of high sensitivity graphite carbon nitride/zinc oxide humidity sensor for breath detection. Sens. Actuators B: Chem. 2021, 332, 129536.

    CAS  Google Scholar 

  47. Solanki, V.; Krupanidhi, S. B.; Nanda, K. K. Sequential elemental dealloying approach for the fabrication of porous metal oxides and chemiresistive sensors thereof for electronic listening. ACS Appl. Mater. Interfaces 2017, 9, 41428–41434.

    CAS  Google Scholar 

  48. Fatima, Q.; Haidry, A. A.; Yao, Z. J.; He, Y.; Li, Z.; Sun, L. C.; Xie, L. J. The critical role of hydroxyl groups in water vapor sensing of graphene oxide. Nanoscale Adv. 2019, 1, 1319–1330.

    CAS  Google Scholar 

  49. Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M. Z.; Chen, P.; Wang, S. P.; Shi, D. X.; Sun, Q. J.; Zhang, G. Y. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076.

    Google Scholar 

  50. Zhu, C. C.; Tao, L. Q.; Wang, Y.; Zheng, K.; Yu, J. B.; L, X.; Chen, X. P.; Huang, Y. X. Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sens. Actuators B: Chem. 2020, 325, 128790.

    CAS  Google Scholar 

  51. Shelke, N. T.; Late, D. J. Hydrothermal growth of MoSe2 nanoflowers for photo- and humidity sensor applications. Sens. Actuators A: Phys. 2019, 295, 160–168.

    CAS  Google Scholar 

  52. Guo, H. Y.; Lan, C. Y.; Zhou, Z. F.; Sun, P. H.; Wei, D. P.; Li, C. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 2017, 9, 6246–6253.

    CAS  Google Scholar 

  53. Zhang, D. Z.; Xu, Z. Y.; Yang, Z. M.; Song, X. S. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 2020, 67, 104251.

    CAS  Google Scholar 

  54. Cao, Y. D.; Zhong, H. B.; Chen, B.; Lin, X. L.; Shen, J. F.; Ye, M. X. Liquid metal-assisted hydrothermal preparation of cobalt disulfide on the polymer tape surface for flexible sensor. Nano Res. 2023, 16, 7575–7582.

    CAS  Google Scholar 

  55. Zheng, N.; Xue, J. H.; Jie, Y.; Cao, X.; Wang, Z. L. Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing. Nano Res. 2022, 15, 6213–6219.

    CAS  Google Scholar 

  56. Liu, X. Z.; Wang, Y. Q.; Wang, G. Y.; Ma, Y. F.; Zheng, Z. H.; Fan, K. K.; Liu, J. C.; Zhou, B. Q.; Wang, G.; You, Z. et al. An ultrasound-driven implantable wireless energy harvesting system using a triboelectric transducer. Matter 2022, 5, 4315–4331.

    Google Scholar 

  57. Lu, Y. Y.; Yang, G.; Shen, Y. J.; Yang, H. Y.; Xu, K. C. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-MicroLett. 2022, 14, 150.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12174348, U21A2070, and 62027816), the Young Elite Scientists Sponsorship Program by CAST (No. 2021QNRC001), the Natural Science Foundation of Henan Province (No. 212300410410), and the China Postdoctoral Science Foundation (Nos. 2018M630830 and 2019T120631).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xigui Yang or Chongxin Shan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Qin, J., Yang, X. et al. Highly sensitive humidity sensors based on hexagonal boron nitride nanosheets for contactless sensing. Nano Res. 16, 10279–10286 (2023). https://doi.org/10.1007/s12274-023-5837-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5837-1

Keywords

Navigation