Skip to main content
Log in

Size-transformable nanoparticles with sequentially triggered drug release and enhanced penetration for anticancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

There are several limitations to the application of nanoparticles in the treatment of cancer, including their low drug loading, poor colloidal stability, insufficient tumor penetration, and uncontrolled release of the drug. Herein, gelatin/laponite (LP)/doxorubicin (GLD) nanoparticles are developed by crosslinking LP with gelatin for doxorubicin delivery. GLD shows high doxorubicin encapsulation efficacy (99%) and strong colloidal stability, as seen from the unchanged size over the past 21 days and reduced protein absorption by 48-fold compared with unmodified laponite/doxorubicin nanoparticles. When gelatin from 115 nm GLD reaches the tumor site, matrix metallopeptidase-2 (MMP-2) from the tumor environment breaks it down to release smaller 40 nm LP nanoparticles for effective tumor cell endocytosis. As demonstrated by superior penetration in both in vitro three-dimensional (3D) tumor spheroids (138-fold increase compared to the free drug) and in vivo tumor models. The intracellular low pH and MMP- 2 further cause doxorubicin release after endocytosis by tumor cells, leading to a higher inhibitory potential against cancer cells. The improved anticancer effectiveness and strong in vivo biocompatibility of GLD have been confirmed using a mouse tumor-bearing model. MMP-2/pH sequentially triggered anticancer drug delivery is made possible by the logical design of tumor-penetrating GLD, offering a useful method for anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mu, W. W.; Chu, Q. H.; Liu, Y. J.; Zhang, N. A review on Nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett. 2020, 12, 142.

    CAS  Google Scholar 

  2. Zhang, M. M.; Gao, S.; Yang, D. J.; Fang, Y.; Lin, X. J.; Jin, X. C.; Liu, Y. L.; Liu, X.; Su, K. X.; Shi, K. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm. Sin. B 2021, 11, 2265–2285.

    CAS  Google Scholar 

  3. Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

    CAS  Google Scholar 

  4. Niu, Y. M.; Zhu, J. H.; Li, Y.; Shi, H. H.; Gong, Y. X.; Li, R.; Huo, Q.; Ma, T.; Liu, Y. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles. J. Control. Release 2018, 277, 35–47.

    CAS  Google Scholar 

  5. Di, J. W.; Gao, X.; Du, Y. M.; Zhang, H.; Gao, J.; Zheng, A. P. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian J. Pharm. Sci. 2021, 16, 444–458.

    Google Scholar 

  6. Tan, J.; Li, H.; Hu, X. X.; Abdullah, R.; Xie, S. T.; Zhang, L. L.; Zhao, M. M.; Luo, Q.; Li, Y. Z.; Sun, Z. J. et al. Size-tunable assemblies based on ferrocene-containing DNA polymers for spatially uniform penetration. Chem 2019, 5, 1775–1792.

    CAS  Google Scholar 

  7. Chen, Y. X.; Liu, X. J.; Yuan, H. F.; Yang, Z. G.; von Roemeling, C. A.; Qie, Y.; Zhao, H.; Wang, Y. F.; Jiang, W.; Kim, B. Y. S. Therapeutic remodeling of the tumor microenvironment enhances nanoparticle delivery. Adv. Sci. 2019, 6, 1802070.

    Google Scholar 

  8. Ding, J. X.; Chen, J. J.; Gao, L. Q.; Jiang, Z. Y.; Zhang, Y.; Li, M. Q.; Xiao, Q. C.; Lee, S. S.; Chen, X. S. Engineered nanomedicines with enhanced tumor penetration. Nano Today 2019, 29, 100800.

    CAS  Google Scholar 

  9. Guo, S. J.; Xu, C. C.; Yin, H. R.; Hill, J.; Pi, F. M.; Guo, P. X. Tuning the size, shape and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation. WIREs Nanomed. Nanobiotechnol. 2020, 12, e1582.

    CAS  Google Scholar 

  10. Cheng, G. H.; Zong, W.; Guo, H. Z.; Li, F. Y.; Zhang, X.; Yu, P.; Ren, F. X.; Zhang, X. L.; Shi, X. E.; Gao, F. et al. Programmed size-changeable nanotheranostic agents for enhanced imaging-guided chemo/photodynamic combination therapy and fast elimination. Adv. Mater. 2021, 33, 2100398.

    CAS  Google Scholar 

  11. Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M. X.; Xia, Y. N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 12320–12364.

    CAS  Google Scholar 

  12. Jiang, H.; Guo, Y. D.; Wei, C. Y.; Hu, P.; Shi, J. L. Nanocatalytic innate immunity activation by mitochondrial DNA oxidative damage for tumor-specific therapy. Adv. Mater. 2021, 33, 2008065.

    CAS  Google Scholar 

  13. Mai, B. T.; Fernandes, S.; Balakrishnan, P. B.; Pellegrino, T. Nanosystems based on magnetic nanoparticles and thermo- or pH-responsive polymers: An update and future perspectives. Acc. Chem. Res. 2018, 51, 999–1013.

    CAS  Google Scholar 

  14. Li, X. L.; Xu, F. N.; He, Y.; Li, Y.; Hou, J. W.; Yang, G.; Zhou, S. B. A hierarchical structured ultrafine fiber device for preventing postoperative recurrence and metastasis of breast cancer. Adv. Funct. Mater. 2020, 30, 2004851.

    CAS  Google Scholar 

  15. Zhou, Z. X.; Vázquez-González, M.; Willner, I. Stimuli-responsive metal-organic framework nanoparticles for controlled drug delivery and medical applications. Chem. Soc. Rev. 2021, 50, 4541–4563.

    CAS  Google Scholar 

  16. Yang, Y. F.; Zhang, J. P. Highly stable lithium-sulfur batteries based on laponite nanosheet-coated celgard separators. Adv. Energy Mater. 2018, 8, 1801778.

    Google Scholar 

  17. Chen, G. X.; Li, D.; Li, J. C.; Cao, X. Y.; Wang, J. H.; Shi, X. Y.; Guo, R. Targeted doxorubicin delivery to hepatocarcinoma cells by lactobionic acid-modified laponite nanodisks. New J. Chem. 2015, 39, 2847–2855.

    CAS  Google Scholar 

  18. Takahashi, T.; Yamada, Y.; Kataoka, K.; Nagasaki, Y. Preparation of a novel PEG-clay hybrid as a DDS material: Dispersion stability and sustained release profiles. J. Control. Release 2005, 107, 408–416.

    CAS  Google Scholar 

  19. Echave, M. C.; del Burgo, L. S.; Pedraz, J. L.; Orive, G. Gelatin as biomaterial for tissue engineering. Curr. Pharm. Des. 2017, 23, 3567–3584.

    CAS  Google Scholar 

  20. Xu, P. W.; Jiang, F. L.; Zhang, H. B.; Yin, R. X.; Cen, L.; Zhang, W. J. Calcium carbonate/gelatin methacrylate microspheres for 3D cell culture in bone tissue engineering. Tissue Eng. Part C: Methods 2020, 26, 418–432.

    CAS  Google Scholar 

  21. Zhou, X.; Tenaglio, S.; Esworthy, T.; Hann, S. Y.; Cui, H. T.; Webster, T. J.; Fenniri, H.; Zhang, L. G. Three-dimensional printing biologically inspired DNA-based gradient scaffolds for cartilage tissue regeneration. ACS Appl. Mater. Interfaces 2020, 12, 33219–33228.

    CAS  Google Scholar 

  22. Liu, J. H.; Yan, L. W.; Yang, W.; Lan, Y.; Zhu, Q. Y.; Xu, H. J.; Zheng, C. B.; Guo, R. Controlled-release neurotensin-loaded silk fibroin dressings improve wound healing in diabetic rat model. Bioact. Mater. 2019, 4, 151–159.

    Google Scholar 

  23. Qu, S. Q.; Dai, C. C.; Yang, F. F.; Huang, T. T.; Xu, T. L.; Zhao, L.; Li, Y. W.; Hao, Z. H. A comparison of two methods for the preparation cefquinome-loaded gelatin microspheres for lung targeting. Pharm. Res. 2018, 35, 43.

    Google Scholar 

  24. Diba, M.; Pape, B.; Klymov, A.; Zhang, Y.; Song, J. K.; Löwik, D. W. P. M.; Seyednejad, H.; Leeuwenburgh, S. C. G. Nanostructured raspberry-like gelatin microspheres for local delivery of multiple biomolecules. Acta Biomater. 2017, 58, 67–79.

    CAS  Google Scholar 

  25. Ceylan, H.; Yasa, I. C.; Yasa, O.; Tabak, A. F.; Giltinan, J.; Sitti, M. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 2019, 13, 3353–3362.

    CAS  Google Scholar 

  26. Fang, T.; Zhang, J.; Zuo, T.; Wu, G.; Xu, Y.; Yang, Y.; Yang, J.; Shen, Q. Chemo-photothermal combination cancer therapy with ROS scavenging, extracellular matrix depletion, and tumor immune activation by telmisartan and diselenide-paclitaxel prodrug loaded nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 31292–31308.

    CAS  Google Scholar 

  27. Chen, X. J.; Zou, J. F.; Zhang, K.; Zhu, J. J.; Zhang, Y.; Zhu, Z. H.; Zheng, H. Y.; Li, F. Z.; Piao, J. G. Photothermal/matrix metalloproteinase-2 dual-responsive gelatin nanoparticles for breast cancer treatment. Acta Pharm. Sini. B 2021, 11, 271–282.

    CAS  Google Scholar 

  28. Bellat, V.; Ting, R.; Southard, T. L.; Vahdat, L.; Molina, H.; Fernandez, J.; Aras, O.; Stokol, T.; Law, B. Functional peptide nanofibers with unique tumor targeting and enzyme-induced local retention properties. Adv. Funct. Mater. 2018, 28, 1803969.

    Google Scholar 

  29. Adib, A. A.; Sheikhi, A.; Shahhosseini, M.; Simeunović, A.; Wu, S.; Castro, C. E.; Zhao, R.; Khademhosseini, A.; Hoelzle, D. J. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue engineering. Biofabrication 2020, 12, 045006.

    CAS  Google Scholar 

  30. Pawar, N.; Bohidar, H. B. Anisotropic domain growth and complex coacervation in nanoclay-polyelectrolyte solutions. Adv. Colloid Interface Sci. 2011, 167, 12–23.

    CAS  Google Scholar 

  31. Karimi, F.; Taheri Qazvini, N.; Namivandi-Zangeneh, R. Fish gelatin/laponite biohybrid elastic coacervates: A complexation kinetics-structure relationship study. Int. J. Biol. Macromol 2013, 61, 102–113.

    CAS  Google Scholar 

  32. Viseras, C.; Cerezo, P.; Sanchez, R.; Salcedo, I.; Aguzzi, C. Current challenges in clay minerals for drug delivery. Appl. Clay Sci. 2010, 48, 291–295.

    CAS  Google Scholar 

  33. Wu, W. T.; Dong, Z.; He, J. S.; Yu, J.; Zhang, J. Transparent cellulose/laponite nanocomposite films. J. Mater. Sci. 2016, 51, 4125–4133.

    CAS  Google Scholar 

  34. Ivanenkov, Y. A.; Machulkin, A. E.; Garanina, A. S.; Skvortsov, D. A.; Uspenskaya, A. A.; Deyneka, E. V.; Trofimenko, A. V.; Beloglazkina, E. K.; Zyk, N. V.; Koteliansky, V. E. et al. Synthesis and biological evaluation of doxorubicin-containing conjugate targeting PSMA. Bioorg. Med. Chem. Lett. 2019, 29, 1246–1255.

    CAS  Google Scholar 

  35. Dai, Y. L.; Yang, D. M.; Ma, P. A.; Kang, X. J.; Zhang, X.; Li, C. X.; Hou, Z. Y.; Cheng, Z. Y.; Lin, J. Doxorubicin conjugated NaYF4: Yb37Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer. Biomatrials 2012, 33, 8704–8713.

    CAS  Google Scholar 

  36. Zheng, L.; Zhou, B. J.; Qiu, X. F.; Xu, X.; Li, G.; Lee, W. Y. W.; Jiang, J.; Li, Y. L. Direct assembly of anticancer drugs to form laponite-based nanocomplexes for therapeutic co-delivery. Mater. Sci. Eog. C 2019, 99, 1407–1414.

    CAS  Google Scholar 

  37. Fan, Y.; Wang, Q. J.; Lin, G. M.; Shi, Y. B.; Gu, Z. L.; Ding, T. T. Combination of using prodrug-modified cationic liposome nanocomplexes and a potentiating strategy via targeted co-delivery of gemcitabine and docetaxel for CD44-overexpressed triple negative breast cancer therapy. Actc Biomcter. 2017, 62, 257–272.

    CAS  Google Scholar 

  38. Meng, H.; Xue, M.; Xia, T.; Zhao, Y. L.; Tamanoi, F.; Stoddart, J. F.; Zink, J. I.; Nel, A. E. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc. 2010, 132, 12690–12697.

    CAS  Google Scholar 

  39. Fang, C.; Bhattarai, N.; Sun, C.; Zhang, M. Q. Functionalized nanoparticles with long-term stability in biological media. Small 2009, 5, 1637–1641.

    CAS  Google Scholar 

  40. Wang, X. Y.; Wang, X. F.; Wang, M. Z.; Zhang, D.; Yang, Q.; Liu, T.; Lei, R.; Zhu, S. F.; Zhao, Y. L.; Chen, C. Y. Probing adsorption behaviors of BSA onto chiral surfaces of nanoparticles. Small 2018, 14, 1703982.

    Google Scholar 

  41. Zhang, Y. Z.; Cui, H. G.; Zhang, R. Q.; Zhang, H. B.; Huang, W. Nanoparticulation of prodrug into medicines for cancer therapy. Adv. Sci. 2021, 8, 2101454.

    CAS  Google Scholar 

  42. Li, M. Q.; Tang, Z. H.; Lv, S. X.; Song, W. T.; Hong, H.; Jing, X. B.; Zhang, Y. Y.; Chen, X. S. Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials 2014, 35, 3851–3864.

    CAS  Google Scholar 

  43. Higuchi, T.; Takeuchi, A.; Munesue, S.; Yamamoto, N.; Hayashi, K.; Kimura, H.; Miwa, S.; Inatani, H.; Shimozaki, S.; Kato, T. et al. Anti-tumor effects of a nonsteroidal anti-inflammatory drug zaltoprofen on chondrosarcoma via activating peroxisome proliferator-activated receptor gamma and suppressing matrix metalloproteinase-2 expression. Cancer Med. 2018, 7, 1944–1954.

    CAS  Google Scholar 

  44. Yang, Y. M.; Yue, C. X.; Han, Y.; Zhang, W.; He, A. N.; Zhang, C. L.; Yin, T.; Zhang, Q.; Zhang, J. J.; Yang, Y. et al. Tumor-responsive small molecule self-assembled nanosystem for simultaneous fluorescence imaging and chemotherapy of lung cancer. Adv. Funct. Meter. 2016, 26, 8735–8745.

    CAS  Google Scholar 

  45. Zhang, P. H.; Wang, Y.; Lian, J.; Shen, Q.; Wang, C.; Ma, B. H.; Zhang, Y. C.; Xu, T. T.; Li, J. X.; Shao, Y. P. et al. Engineering the surface of smart nanocarriers using a pH-/thermal-/GSH-responsive polymer zipper for precise tumor targeting therapy in vivo. Adv. Meter. 2017, 29, 1702311.

    Google Scholar 

  46. Schroeder, A.; Heller, D. A.; Winslow, M. M.; Dahlman, J. E.; Pratt, G. W.; Langer, R.; Jacks, T.; Anderson, D. G. Treating metastatic cancer with nanotechnology. Net. Rev. Cancer 2012, 12, 39–50.

    CAS  Google Scholar 

  47. Zhuang, J. L.; Zhang, J.; Wu, M. H.; Zhang, Y. Q. A dynamic 3D tumor spheroid chip enables more accurate nanomedicine uptake evaluation. Adv. Sci. 2019, 6, 1901462.

    CAS  Google Scholar 

  48. Rodrigues, T.; Kundu, B.; Silva-Correia, J.; Kundu, S. C.; Oliveira, J. M.; Reis, R. L.; Correlo, V. M. Emerging tumor spheroids technologies for 3D in vitro cancer modeling. Pharmacol. Therapeut. 2018, 184, 201–211.

    CAS  Google Scholar 

  49. Ruan, S. B.; Yuan, M. Q.; Zhang, L.; Hu, G. L.; Chen, J. T.; Cun, X. L.; Zhang, Q. Y.; Yang, Y. T.; He, Q.; Gao, H. L. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 2015, 37, 425–435.

    CAS  Google Scholar 

  50. Kim, J.; Jo, C.; Lim, W. G.; Jung, S.; Lee, Y. M.; Lim, J.; Lee, H.; Lee, J.; Kim, W. J. Programmed nanoparticle-loaded nanoparticles for deep-penetrating 3D cancer therapy. Adv. Mater. 2018, 30, 1707557.

    Google Scholar 

  51. Zhang, Z. W.; Wang, H.; Tan, T.; Li, J.; Wang, Z. W.; Li, Y. P. Rational design of nanoparticles with deep tumor penetration for effective treatment of tumor metastasis. Adv. Funct. Mater. 2018, 28, 1801840.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (973 Program, No. 2012CB933600), the National Natural Science Foundation of China (Nos. 81771964 and 82072051) and the Shanghai Municipal Natural Science Foundation (No. 15ZR1408500). This work was funded by the Special Project of Clinical Research of Health Industry of Shanghai Municipal Health Commission (No. 201940178), the Scientific Research Project of Hongkou District Health Committee of Shanghai (No. 2002-17), the Clinical Research Project of Wu Jieping Medical Foundation (No. 320.6750.2020-18-2), and the Research Project of Shanghai Fourth People’s Hospital (No. sykyqd 00701 & 00702).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulin Li, Yan Wu, Kaichun Li or Jie Gao.

Electronic Supplementary Material

12274_2023_5833_MOESM1_ESM.pdf

Size-transformable nanoparticles with sequentially triggered drug release and enhanced penetration for anticancer therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, L., Zhong, G. et al. Size-transformable nanoparticles with sequentially triggered drug release and enhanced penetration for anticancer therapy. Nano Res. 16, 11186–11196 (2023). https://doi.org/10.1007/s12274-023-5833-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5833-5

Keywords

Navigation