Skip to main content
Log in

Single-cluster electronics using metallic clusters: Fabrications, regulations, and applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metallic clusters, ranging from 1 to 2 nm in size, have emerged as promising candidates for creating nanoelectronic devices at the single-cluster level. With the intermediate quantum properties between metals and semiconductors, these metallic clusters offer an alternative pathway to silicon-based electronics and organic molecules for miniaturized electronics with dimensions below 5 nm. Significant progress has been made in studies of single-cluster electronic devices. However, a clear guide for selecting, synthesizing, and fabricating functional single-cluster electronic devices is still required. This review article provides a comprehensive overview of single-cluster electronic devices, including the mechanisms of electron transport, the fabrication of devices, and the regulations of electron transport properties. Furthermore, we discuss the challenges and future directions for single-cluster electronic devices and their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilcoxon, J. P.; Abrams, B. L. Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 2006, 35, 1162–1194.

    Article  CAS  Google Scholar 

  2. Schmid, G. The relevance of shape and size of Au55 clusters. Chem. Soc. Rev. 2008, 37, 1909–1930.

    Article  CAS  Google Scholar 

  3. Dubois, J. G. A.; Gerritsen, J. W.; Shafranjuk, S. E.; Boon, E. J. G.; Schmid, G.; van Kempen, H. Coulomb staircases and quantum size effects in tunnelling spectroscopy on ligand-stabilized metal clusters. Eur. Lett. 1996, 33, 279–284.

    Article  CAS  Google Scholar 

  4. Ni, J. T.; Zhong, C. L.; Li, L. Y.; Su, M. X.; Wang, X. R.; Sun, J. N.; Chen, S.; Duan, C. B.; Han, C. M.; Xu, H. Deep-blue electroluminescence from phosphine-stabilized Au3 triangles and Au3Ag pyramids. Angew. Chem., Int. Ed. 2022, 61, e202213826.

    Article  CAS  Google Scholar 

  5. Hu, F.; Guan, Z. J.; Yang, G. Y.; Wang, J. Q.; Li, J. J.; Yuan, S. F.; Liang, G. J.; Wang, Q. M. Molecular gold nanocluster Au156 showing metallic electron dynamics. J. Am. Chem. Soc. 2021, 143, 17059–17067.

    Article  CAS  Google Scholar 

  6. Chen, T. K.; Lin, H. B.; Cao, Y. T.; Yao, Q. F.; Xie, J. P. Interactions of metal nanoclusters with light: Fundamentals and applications. Adv. Mater. 2022, 34, 2103918.

    Article  CAS  Google Scholar 

  7. Zhu, M. Z.; Aikens, C. M.; Hendrich, M. P.; Gupta, R.; Qian, H. F.; Schatz, G. C.; Jin, R. C. Reversible switching of magnetism in thiolate-protected Au25 superatoms. J. Am. Chem. Soc. 2009, 131, 2490–2492.

    Article  CAS  Google Scholar 

  8. Zyazin, A. S.; van den Berg, J. W. G.; Osorio, E. A.; van der Zant, H. S. J.; Konstantinidis, N. P.; Leijnse, M.; Wegewijs, M. R.; May, F.; Hofstetter, W.; Danieli, C. et al. Electric field controlled magnetic anisotropy in a single molecule. Nano Lett. 2010, 10, 3307–3311.

    Article  CAS  Google Scholar 

  9. Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

    Article  CAS  Google Scholar 

  10. Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

    Article  Google Scholar 

  11. Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084–3093.

    Article  CAS  Google Scholar 

  12. Nimtz, G.; Marquardt, P.; Gleiter, H. Size-induced metal-insulator transition in metals and semiconductors. J. Cryst. Growth 1988, 86, 66–71.

    Article  CAS  Google Scholar 

  13. Marquardt, P.; Nimtz, G.; Mühlschlegel, B. On the quasi-static conductivity of sub-micrometer crystals. Solid State Commun. 1988, 65, 539–542.

    Article  CAS  Google Scholar 

  14. Siu, T. C.; Wong, J. Y.; Hight, M. O.; Su, T. A. Single-cluster electronics. Phys. Chem. Chem. Phys. 2021, 23, 9643–9659.

    Article  CAS  Google Scholar 

  15. Hu, K. J.; Yan, W. C.; Zhang, M. H.; Song, F. Q. Electrical devices designed based on inorganic clusters. Nanotechnology 2022, 33, 502001.

    Article  Google Scholar 

  16. Albrecht, T.; Mertens, S. F. L.; Ulstrup, J. Intrinsic multistate switching of gold clusters through electrochemical gating. J. Am. Chem. Soc. 2007, 129, 9162–9167.

    Article  CAS  Google Scholar 

  17. Lovat, G.; Choi, B.; Paley, D. W.; Steigerwald, M. L.; Venkataraman, L.; Roy, X. Room-temperature current blockade in atomically defined single-cluster junctions. Nat. Nanotechnol. 2017, 12, 1050–1054.

    Article  CAS  Google Scholar 

  18. Wu, C. L.; Qiao, X. H.; Robertson, C. M.; Higgins, S. J.; Cai, C. X.; Nichols, R. J.; Vezzoli, A. A chemically soldered polyoxometalate single-molecule transistor. Angew. Chem., Int. Ed. 2020, 59, 12029–12034.

    Article  CAS  Google Scholar 

  19. Kastner, M. A. The single-electron transistor. Rev. Mod. Phys. 1992, 64, 849–858.

    Article  Google Scholar 

  20. Gunasekaran, S.; Reed, D. A.; Paley, D. W.; Bartholomew, A. K.; Venkataraman, L.; Steigerwald, M. L.; Roy, X.; Nuckolls, C. Single-electron currents in designer single-cluster devices. J. Am. Chem. Soc. 2020, 142, 14924–14932.

    Article  CAS  Google Scholar 

  21. Chi, L. F.; Hartig, M.; Drechsler, T.; Schwaack, T.; Seidel, C.; Fuchs, H.; Schmid, G. Single-electron tunneling in Au55 cluster monolayers. Appl. Phys. A 1998, 66, S187–S190.

    Article  CAS  Google Scholar 

  22. Yuan, P.; Zhang, R. H.; Selenius, E.; Ruan, P. P.; Yao, Y. R.; Zhou, Y.; Malola, S.; Häkkinen, H.; Teo, B. K.; Cao, Y. et al. Solventmediated assembly of atom-precise gold-silver nanoclusters to semiconducting one-dimensional materials. Nat. Commun. 2020, 11, 2229.

    Article  CAS  Google Scholar 

  23. Song, H.; Reed, M. A.; Lee, T. Single molecule electronic devices. Adv. Mater. 2011, 23, 1583–1608.

    Article  CAS  Google Scholar 

  24. Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a molecular junction. Science 1997, 278, 252–254.

    Article  CAS  Google Scholar 

  25. Xu, B. Q.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223.

    Article  CAS  Google Scholar 

  26. Hong, W. J.; Valkenier, H.; Mészáros, G.; Manrique, D. Z.; Mishchenko, A.; Putz, A.; García, P. M.; Lambert, C. J.; Hummelen, J. C.; Wandlowski, T. An MCBJ case study: The influence of π-conjugation on the single-molecule conductance at a solid/liquid interface. Beilstein J. Nanotechnol. 2011, 2, 699–713.

    Article  Google Scholar 

  27. Leary, E.; van Zalinge, H.; Higgins, S. J.; Nichols, R. J.; Fabrizi de Biani, F.; Leoni, P.; Marchetti, L.; Zanello, P. A molecular wire incorporating a robust hexanuclear platinum cluster. Phys. Chem. Chem. Phys. 2009, 11, 5198–5202.

    Article  CAS  Google Scholar 

  28. Boardman, B. M.; Widawsky, J. R.; Park, Y. S.; Schenck, C. L.; Venkataraman, L.; Steigerwald, M. L.; Nuckolls, C. Conductance of single cobalt chalcogenide cluster junctions. J. Am. Chem. Soc. 2011, 133, 8455–8457.

    Article  CAS  Google Scholar 

  29. Nakazato, K.; Thornton, T. J.; White, J.; Ahmed, H. Single-electron effects in a point contact using side-gating in delta-doped layers. Appl. Phys. Lett. 1992, 61, 3145–3147.

    Article  Google Scholar 

  30. Chen, W.; Ahmed, H.; Nakazoto, K. Coulomb blockade at 77 K in nanoscale metallic islands in a lateral nanostructure. Appl. Phys. Lett. 1995, 66, 3383–3384.

    Article  CAS  Google Scholar 

  31. Bezryadin, A.; Dekker, C.; Schmid, G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 1997, 71, 1273–1275.

    Article  CAS  Google Scholar 

  32. Klein, D. L.; McEuen, P. L.; Katari, J. E. B.; Roth, R.; Alivisatos, A. P. An approach to electrical studies of single nanocrystals. Appl. Phys. Lett. 1996, 68, 2574–2576.

    Article  CAS  Google Scholar 

  33. Wei, Z. X.; Jiang, W. R.; Bai, Z. B.; Lian, Z.; Wang, Z. G.; Song, F. Q. The synthesis and electrical transport of ligand-protected Au13 clusters. Eur. Phys. J. D 2017, 71, 237.

    Article  Google Scholar 

  34. Xu, W.; Li, R. H.; Wang, C. H.; Zhong, J. H.; Liu, J. Y.; Hong, W. J. Investigation of electronic excited states in single-molecule junctions. Nano Res. 2022, 15, 5726–5745.

    Article  Google Scholar 

  35. Yang, Y.; Liu, J. Y.; Zheng, J. T.; Lu, M.; Shi, J.; Hong, W. J.; Yang, F. Z.; Tian, Z. Q. Promising electroplating solution for facile fabrication of Cu quantum point contacts. Nano Res. 2017, 10, 3314–3323.

    Article  CAS  Google Scholar 

  36. Kaliginedi, V.; Rudnev, A. V.; Moreno-García, P.; Baghernejad, M.; Huang, C. C.; Hong, W. J.; Wandlowski, T. Promising anchoring groups for single-molecule conductance measurements. Phys. Chem. Chem. Phys. 2014, 16, 23529–23539.

    Article  CAS  Google Scholar 

  37. Zharinov, V. S.; Picot, T.; Scheerder, J. E.; Janssens, E.; van de Vondel, J. Room temperature single electron transistor based on a size-selected aluminium cluster. Nanoscale 2020, 12, 1164–1170.

    Article  CAS  Google Scholar 

  38. Ralls, K. S.; Buhrman, R. A.; Tiberio, R. C. Fabrication of thin-film metal nanobridges. Appl. Phys. Lett. 1989, 55, 2459–2461.

    Article  CAS  Google Scholar 

  39. Ralph, D. C.; Black, C. T.; Tinkham, M. Spectroscopic measurements of discrete electronic states in single metal particles. Phys. Rev. Lett. 1995, 74, 3241–3244.

    Article  CAS  Google Scholar 

  40. Schön, G.; Simon, U. A fascinating new field in colloid science: Small ligand-stabilized metal clusters and their possible application in microelectronics: Part II: Future directions. Colloid. Polym. Sci. 1995, 273, 202–218.

    Article  Google Scholar 

  41. Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

    Article  CAS  Google Scholar 

  42. Schmid, G. Clusters and colloids: Bridges between molecular and condensed material. Endeavour 1990, 14, 172–178.

    Article  CAS  Google Scholar 

  43. Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 1999, 75, 301–303.

    Article  CAS  Google Scholar 

  44. Guo, X. F.; Small, J. P.; Klare, J. E.; Wang, Y. L.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L. M.; O’Brien, S. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 2006, 311, 356–359.

    Article  CAS  Google Scholar 

  45. Yang, P.; Arfaoui, I.; Cren, T.; Goubet, N.; Pileni, M. P. Electronic properties probed by scanning tunneling spectroscopy: From isolated gold nanocrystal to well-defined supracrystals. Phys. Rev. B 2012, 86, 075409.

    Article  Google Scholar 

  46. Kano, S.; Azuma, Y.; Kanehara, M.; Teranishi, T.; Majima, Y. Room-temperature coulomb blockade from chemically synthesized Au nanoparticles stabilized by acid-base interaction. Appl. Phys. Express 2010, 3, 105003.

    Article  Google Scholar 

  47. Junno, T.; Carlsson, S. B.; Xu, H. Q.; Montelius, L.; Samuelson, L. Fabrication of quantum devices by Ångström-level manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 1998, 72, 548–550.

    Article  CAS  Google Scholar 

  48. Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933.

    Article  CAS  Google Scholar 

  49. Hong, W. J.; Manrique, D. Z.; Moreno-Garcia, P.; Gulcur, M.; Mishchenko, A.; Lambert, C. J.; Bryce, M. R.; Wandlowski, T. Single molecular conductance of tolanes: Experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 2012, 134, 2292–2304.

    Article  CAS  Google Scholar 

  50. Liu, J. Y.; Huang, X. Y.; Wang, F.; Hong, W. J. Quantum interference effects in charge transport through single-molecule junctions: Detection, manipulation, and application. Acc. Chem. Res. 2019, 52, 151–160.

    Article  CAS  Google Scholar 

  51. de Bruijckere, J.; Gehring, P.; Palacios-Corella, M.; Clemente-León, M.; Coronado, E.; Paaske, J.; Hedegård, P.; van der Zant, H. S. J. Ground-state spin blockade in a single-molecule junction. Phys. Rev. Lett. 2019, 122, 197701.

    Article  CAS  Google Scholar 

  52. Vinod, C. P.; Kulkarni, G. U.; Rao, C. N. R. Size-dependent changes in the electronic structure of metal clusters as investigated by scanning tunneling spectroscopy. Chem. Phys. Lett. 1998, 289, 329–333.

    Article  CAS  Google Scholar 

  53. Dorogi, M.; Gomez, J.; Osifchin, R.; Andres, R. P.; Reifenberger, R. Room-temperature Coulomb blockade from a self-assembled molecular nanostructure. Phys. Rev. B 1995, 52, 9071–9077.

    Article  CAS  Google Scholar 

  54. van Kempen, H.; Dubois, J. G. A.; Gerritsen, J. W.; Schmid, G. Small metallic particles studied by scanning tunneling microscopy. Phys. B 1995, 204, 51–56.

    Article  CAS  Google Scholar 

  55. Soldatov, E. S.; Khanin, V. V.; Trifonov, A. S.; Presnov, D. E.; Yakovenko, S. A.; Khomutov, G. B.; Gubin, C. P.; Kolesov, V. V. Single-electron transistor based on a single cluster molecule at room temperature. J. Exp. Theor. Phys. Lett. 1996, 64, 556–560.

    Article  Google Scholar 

  56. Koo, H.; Kano, S.; Tanaka, D.; Sakamoto, M.; Teranishi, T.; Cho, G.; Majima, Y. Characterization of thiol-functionalized oligo(phenylene-ethynylene)-protected Au nanoparticles by scanning tunneling microscopy and spectroscopy. Appl. Phys. Lett. 2012, 101, 083115.

    Article  Google Scholar 

  57. Andres, R. P.; Bein, T.; Dorogi, M.; Feng, S.; Henderson, J. I.; Kubiak, C. P.; Mahoney, W.; Osifchin, R. G.; Reifenberger, R. Coulomb staircase at room temperature in a self-assembled molecular nanostructure. Science 1996, 272, 1323–1325.

    Article  CAS  Google Scholar 

  58. Wang, B.; Wang, H. Q.; Li, H. X.; Zeng, C. G.; Hou, J. G.; Xiao, X. D. Tunable single-electron tunneling behavior of ligand-stabilized gold particles on self-assembled monolayers. Phys. Rev. B 2000, 63, 035403.

    Article  Google Scholar 

  59. Yang, G. H.; Tan, L.; Yang, Y. Y.; Chen, S. W.; Liu, G. Y. Single electron tunneling and manipulation of nanoparticles on surfaces at room temperature. Surf. Sci. 2005, 589, 129–138.

    Article  CAS  Google Scholar 

  60. van Bentum, P. J. M.; Smokers, R. T. M.; van Kempen, H. Incremental charging of single small particles. Phys. Rev. Lett. 1988, 60, 2543–2546.

    Article  Google Scholar 

  61. Wilkins, R.; Ben-Jacob, E.; Jaklevic, R. C. Scanning-tunneling-microscope observations of Coulomb blockade and oxide polarization in small metal droplets. Phys. Rev. Lett. 1989, 63, 801–804.

    Article  CAS  Google Scholar 

  62. Gittins, D. I.; Bethell, D.; Schiffrin, D. J.; Nichols, R. J. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 2000, 408, 67–69.

    Article  CAS  Google Scholar 

  63. Chen, H. L.; Brasiliense, V.; Mo, J. S.; Zhang, L.; Jiao, Y.; Chen, Z.; Jones, L. O.; He, G.; Guo, Q. H.; Chen, X. Y. et al. Single-molecule charge transport through positively charged electrostatic anchors. J. Am. Chem. Soc. 2021, 143, 2886–2895.

    Article  CAS  Google Scholar 

  64. Zhang, B. H.; Chen, J. S.; Cao, Y. T.; Chai, O. J. H.; Xie, J. P. Ligand design in ligand-protected gold nanoclusters. Small 2021, 17, 2004381.

    Article  CAS  Google Scholar 

  65. Choi, B.; Capozzi, B.; Ahn, S.; Turkiewicz, A.; Lovat, G.; Nuckolls, C.; Steigerwald, M. L.; Venkataraman, L.; Roy, X. Solvent-dependent conductance decay constants in single cluster junctions. Chem. Sci. 2016, 7, 2701–2705.

    Article  CAS  Google Scholar 

  66. Yuan, S. S.; Xu, X. H.; Daaoub, A.; Fang, C.; Cao, W. Q.; Chen, H.; Sangtarash, S.; Zhang, J. W.; Sadeghi, H.; Hong, W. J. Singleatom control of electrical conductance and thermopower through single-cluster junctions. Nanoscale 2021, 13, 12594–12601.

    Article  CAS  Google Scholar 

  67. Feng, A. N.; Hou, S. J.; Yan, J. Z.; Wu, Q. Q.; Tang, Y. X.; Yang, Y.; Shi, J.; Xiao, Z. Y.; Lambert, C. J.; Zheng, N. F. et al. Conductance growth of single-cluster junctions with increasing sizes. J. Am. Chem. Soc. 2022, 144, 15680–15688.

    Article  CAS  Google Scholar 

  68. Wei, C. Y.; Ye, J. Y.; Su, Y. M.; Zheng, J. T.; Xiao, S. Q.; Chen, J. W.; Yuan, S. S.; Zhang, C. Y.; Bai, J.; Xu, H. et al. Halide anchors for single-cluster electronics. CCS Chem. 2022, 1–9.

    Google Scholar 

  69. Su, T. A.; Neupane, M.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 2016, 1, 16002.

    Article  CAS  Google Scholar 

  70. Xie, X. M.; Li, P. H.; Xu, Y. X.; Zhou, L.; Yan, Y.; Xie, L. H.; Jia, C. C.; Guo, X. F. Single-molecule junction: A reliable platform for monitoring molecular physical and chemical processes. ACS Nano 2022, 16, 3476–3505.

    Article  CAS  Google Scholar 

  71. Thijssen, J. M.; van der Zant, H. S. J. Charge transport and single-electron effects in nanoscale systems. Phys. Status Solidi B 2008, 245, 1455–1470.

    Article  CAS  Google Scholar 

  72. Xiang, D.; Wang, X. L.; Jia, C. C.; Lee, T.; Guo, X. F. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440.

    Article  CAS  Google Scholar 

  73. Kaliginedi, V.; Moreno-Garcia, P.; Valkenier, H.; Hong, W. J.; García-Suárez, V. M.; Buiter, P.; Otten, J. L.; Hummelen, J. C.; Lambert, C. J.; Wandlowski, T. Correlations between molecular structure and single-junction conductance: A case study with oligo(phenylene-ethynylene)-type wires. J. Am. Chem. Soc. 2012, 134, 5262–5275.

    Article  CAS  Google Scholar 

  74. Song, H.; Kim, Y.; Jeong, H.; Reed, M. A.; Lee, T. Coherent tunneling transport in molecular junctions. J. Phys. Chem. C 2010, 114, 20431–20435.

    Article  CAS  Google Scholar 

  75. Kano, S.; Tada, T.; Majima, Y. Nanoparticle characterization based on STM and STS. Chem. Soc. Rev. 2015, 44, 970–987.

    Article  CAS  Google Scholar 

  76. Danilov, A.; Kubatkin, S.; Kafanov, S.; Hedegård, P.; Stuhr-Hansen, N.; Moth-Poulsen, K.; Bjørnholm, T. Electronic transport in single molecule junctions: Control of the molecule-electrode coupling through intramolecular tunneling barriers. Nano Lett. 2008, 8, 1–5.

    Article  CAS  Google Scholar 

  77. Roy, X.; Schenck, C. L.; Ahn, S.; Lalancette, R. A.; Venkataraman, L.; Nuckolls, C.; Steigerwald, M. L. Quantum soldering of individual quantum dots. Angew. Chem., Int. Ed. 2012, 51, 12473–12476.

    Article  CAS  Google Scholar 

  78. Zotti, L. A.; Leary, E.; Soriano, M.; Cuevas, J. C.; Palacios, J. J. A molecular platinum cluster junction: a single-molecule switch. J. Am. Chem. Soc. 2013, 135, 2052–2055.

    Article  CAS  Google Scholar 

  79. Bai, J.; Li, X. H.; Zhu, Z. Y.; Zheng, Y.; Hong, W. J. Single-molecule electrochemical transistors. Adv. Mater. 2021, 33, 2005883.

    Article  CAS  Google Scholar 

  80. Higaki, T.; Li, Q.; Zhou, M.; Zhao, S.; Li, Y. W.; Li, S. T.; Jin, R. C. Toward the tailoring chemistry of metal nanoclusters for enhancing functionalities. Acc. Chem. Res. 2018, 51, 2764–2773.

    Article  CAS  Google Scholar 

  81. Kwak, K.; Lee, D. Electrochemistry of atomically precise metal nanoclusters. Acc. Chem. Res. 2019, 52, 12–22.

    Article  CAS  Google Scholar 

  82. Boronat, M.; Leyva-Pérez, A.; Corma, A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: Attempts to predict reactivity with clusters and nanoparticles of gold. Acc. Chem. Res. 2014, 47, 834–844.

    Article  CAS  Google Scholar 

  83. Huang, J. H.; Si, Y. B.; Dong, X. Y.; Wang, Z. Y.; Liu, L. Y.; Zang, S. Q.; Mak, T. C. W. Symmetry breaking of atomically precise fullerene-like metal nanoclusters. J. Am. Chem. Soc. 2021, 143, 12439–12444.

    Article  CAS  Google Scholar 

  84. Li, J.; Hou, S. J.; Yao, Y. R.; Zhang, C. Y.; Wu, Q. Q.; Wang, H. C.; Zhang, H. W.; Liu, X. Y.; Tang, C.; Wei, M. X. et al. Room-temperature logic-in-memory operations in single-metallofullerene devices. Nat. Mater. 2022, 21, 917–923.

    Article  CAS  Google Scholar 

  85. Greenwald, J. E.; Cameron, J.; Findlay, N. J.; Fu, T. R.; Gunasekaran, S.; Skabara, P. J.; Venkataraman, L. Highly nonlinear transport across single-molecule junctions via destructive quantum interference. Nat. Nanotechnol. 2021, 16, 313–317.

    Article  CAS  Google Scholar 

  86. Sherif, S.; Rubio-Bollinger, G.; Pinilla-Cienfuegos, E.; Coronado, E.; Cuevas, J. C.; Agrait, N. Current rectification in a single molecule diode: The role of electrode coupling. Nanotechnology 2015, 26, 291001.

    Article  Google Scholar 

  87. Schönenberger, C.; van Houten, H.; Donkersloot, H. C. Single-electron tunnelling observed at room temperature by scanning-tunnelling microscopy. Eur. Lett. 1992, 20, 249–254.

    Article  Google Scholar 

  88. Zhang, N.; Hu, H.; Qu, L.; Huo, R.; Zhang, J.; Duan, C. B.; Meng, Y. S.; Han, C. M.; Xu, H. Overcoming efficiency limitation of cluster light-emitting diodes with asymmetrically functionalized biphosphine Cu4I4 cubes. J. Am. Chem. Soc. 2022, 144, 6551–6557.

    Article  CAS  Google Scholar 

  89. Lee, T. H.; Dickson, R. M. Single-molecule LEDs from nanoscale electroluminescent junctions. J. Phys. Chem. B 2003, 107, 7387–7390.

    Article  CAS  Google Scholar 

  90. Benten, W.; Nilius, N.; Ernst, N.; Freund, H. J. Photon emission spectroscopy of single oxide-supported Ag-Au alloy clusters. Phys. Rev. B 2005, 72, 045403.

    Article  Google Scholar 

  91. Yu, A.; Li, S. W.; Czap, G.; Ho, W. Tunneling-electron-induced light emission from single gold nanoclusters. Nano Lett. 2016, 16, 5433–5436.

    Article  CAS  Google Scholar 

  92. Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R. Single-molecule magnets. MRS Bull. 2011, 25, 66–71.

    Article  Google Scholar 

  93. Heersche, H. B.; de Groot, Z.; Folk, J. A.; van der Zant, H. S. J.; Romeike, C.; Wegewijs, M. R.; Zobbi, L.; Barreca, D.; Tondello, E.; Cornia, A. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 2006, 96, 206801.

    Article  CAS  Google Scholar 

  94. Barraza-Lopez, S.; Park, K.; García-Suárez, V.; Ferrer, J. First-principles study of electron transport through the single-molecule magnet Mn12. Phys. Rev. Lett. 2009, 102, 246801.

    Article  Google Scholar 

  95. Hao, H.; Zheng, X. H.; Jia, T.; Zeng, Z. Room temperature memory device using single-molecule magnets. RSC Adv. 2015, 5, 54667–54671.

    Article  CAS  Google Scholar 

  96. Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

    Article  CAS  Google Scholar 

  97. Zang, Y. P.; Stone, I.; Inkpen, M. S.; Ng, F.; Lambert, T. H.; Nuckolls, C.; Steigerwald, M. L.; Roy, X.; Venkataraman, L. In situ coupling of single molecules driven by gold-catalyzed electrooxidation. Angew. Chem., Int. Ed. 2019, 58, 16008–16012.

    Article  CAS  Google Scholar 

  98. Peiris, C. R.; Vogel, Y. B.; Le Brun, A. P.; Aragonès, A. C.; Coote, M. L.; Díez-Pérez, I.; Ciampi, S.; Darwish, N. Metal-single-molecule-semiconductor junctions formed by a radical reaction bridging gold and silicon electrodes. J. Am. Chem. Soc. 2019, 141, 14788–14797.

    Article  CAS  Google Scholar 

  99. Aragonès, A. C.; Haworth, N. L.; Darwish, N.; Ciampi, S.; Bloomfield, N. J.; Wallace, G. G.; Diez-Perez, I.; Coote, M. L. Electrostatic catalysis of a Diels–Alder reaction. Nature 2016, 531, 88–91.

    Article  Google Scholar 

  100. Shen, H.; Xu, Z.; Wang, L. Z.; Han, Y. Z.; Liu, X. H.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Tertiary chiral nanostructures from C–H⋯F directed assembly of chiroptical superatoms. Angew. Chem., Int. Ed. 2021, 60, 22411–22416.

    Article  CAS  Google Scholar 

  101. Liu, W. D.; Wang, J. Q.; Yuan, S. F.; Chen, X.; Wang, Q. M. Chiral superatomic nanoclusters Ag47 induced by the ligation of amino acids. Angew. Chem., Int. Ed. 2021, 60, 11430–11435.

    Article  CAS  Google Scholar 

  102. Liu, X.; Saranya, G.; Huang, X. Y.; Cheng, X. L.; Wang, R.; Chen, M. Y.; Zhang, C. F.; Li, T.; Zhu, Y. Ag2Au50(PET)36 nanocluster: Dimeric assembly of Au25(PET)18 enabled by silver atoms. Angew. Chem., Int. Ed. 2020, 59, 13941–13946.

    Article  CAS  Google Scholar 

  103. Zheng, K. Y.; Fung, V.; Yuan, X.; Jiang, D. E.; Xie, J. P. Real time monitoring of the dynamic intracluster diffusion of single gold atoms into silver nanoclusters. J. Am. Chem. Soc. 2019, 141, 18977–18983.

    Article  CAS  Google Scholar 

  104. Wang, Y.; Su, H.; Ren, L.; Malola, S.; Lin, S.; Teo, B. K.; Hakkinen, H.; Zheng, N. Site preference in multimetallic nanoclusters: Incorporation of alkali metal ions or copper atoms into the alkynyl-protected body-centered cubic cluster [Au7Ag8(C≡CtBu)12]+. Angew. Chem., Int. Ed. 2016, 55, 15152–15156.

    Article  CAS  Google Scholar 

  105. Liao, L. W.; Zhou, S. M.; Dai, Y. F.; Liu, L. R.; Yao, C. H.; Fu, C. F.; Yang, J. L.; Wu, Z. K. Mono-mercury doping of Au25 and the HOMO/LUMO energies evaluation employing differential pulse voltammetry. J. Am. Chem. Soc. 2015, 137, 9511–9514.

    Article  CAS  Google Scholar 

  106. Wang, K.; Meyhofer, E.; Reddy, P. Thermal and thermoelectric properties of molecular junctions. Adv. Funct. Mater. 2019, 30, 1904534.

    Article  Google Scholar 

  107. Rincón-García, L.; Ismael, A. K.; Evangeli, C.; Grace, I.; Rubio-Bollinger, G.; Porfyrakis, K.; Agraït, N.; Lambert, C. J. Molecular design and control of fullerene-based bi-thermoelectric materials. Nat. Mater. 2016, 15, 289–293.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22250003, 22173075, 21933012, and 22003052) and the Fundamental Research Funds for the Central Universities (Nos. 20720220020, 20720220072, and 20720200068).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiyun Huang, Jiale Huang or Wenjing Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Xu, W., Ji, S. et al. Single-cluster electronics using metallic clusters: Fabrications, regulations, and applications. Nano Res. 17, 65–78 (2024). https://doi.org/10.1007/s12274-023-5774-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5774-z

Keywords

Navigation