Skip to main content
Log in

Endogenous formaldehyde responsive fluorescent probe for bioimaging

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Formaldehyde (FA), as the simplest endogenous carbonyl molecule, participates in many biosynthesis and metabolism in living organisms, such as nucleotides and adenosine triphosphate (ATP). FA concentrations are sub-millimolar in the normal healthy body, but can rise significantly in a number of disease pathologies. As a result, detecting endogenous FA is critical for illness diagnosis and rehabilitation therapy monitoring. Recent studies have focused on the FA-responsive turn-on fluorescence probe, which has huge promise in the detection and visualization of FA in living cells and organisms, as well as exceptional use in disease diagnosis and therapeutic monitoring. This review summarizes the fluorescence luminescence mechanism and design concepts of FA fluorescent probes, as well as their recent applications in bioimaging and illness diagnostics. Additionally, this article indicates the present dilemma of FA-responsive fluorescent probe, including selectivity, specificity, and detection mode, which may provide references for the development of FA-responsive fluorescent probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lai, Y. Q.; Yu, R.; Hartwell, H. J.; Moeller, B. C.; Bodnar, W. M.; Swenberg, J. A. Measurement of endogenous versus exogenous formaldehyde-induced DNA-protein crosslinks in animal tissues by stable isotope labeling and ultrasensitive mass spectrometry. Cancer Res. 2016, 76, 2652–2661.

    CAS  Google Scholar 

  2. Kou, Y. D.; Zhao, H.; Cui, D. H.; Han, H. B.; Tong, Z. Q. Formaldehyde toxicity in age-related neurological dementia. Ageing Res. Rev. 2022, 73, 101512.

    CAS  Google Scholar 

  3. Wolkoff, P. Indoor air pollutants in office environments: Assessment of comfort, health, and performance. Int. J. Hyg. Environ. Health 2013, 216, 371–394.

    CAS  Google Scholar 

  4. Morellato, A. E.; Umansky, C.; Pontel, L. B. The toxic side of one-carbon metabolism and epigenetics. Redox Biol. 2021, 40, 101850.

    CAS  Google Scholar 

  5. Vasilyev, N.; Williams, T.; Brennan, M. L.; Unzek, S.; Zhou, X. R.; Heinecke, J. W.; Spitz, D. R.; Topol, E. J.; Hazen, S. L.; Penn, M. S. Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation 2005, 112, 2812–2820.

    CAS  Google Scholar 

  6. Burgos-Barragan, G.; Wit, N.; Meiser, J.; Dingler, F. A.; Pietzke, M.; Mulderrig, L.; Pontel, L. B.; Rosado, I. V.; Brewer, T. F.; Cordell, R. L. et al. Mammals divert endogenous genotoxic formaldehyde into one-carbon metabolism. Nature 2017, 548, 549–554.

    CAS  Google Scholar 

  7. Umansky, C.; Morellato, A. E.; Rieckher, M.; Scheidegger, M. A.; Martinefski, M. R.; Fernández, G. A.; Pak, O.; Kolesnikova, K.; Reingruber, H.; Bollini, M. et al. Endogenous formaldehyde scavenges cellular glutathione resulting in redox disruption and cytotoxicity. Nat. Commun. 2022, 13, 745.

    CAS  Google Scholar 

  8. Swenberg, J. A.; Moeller, B. C.; Lu, K.; Rager, J. E.; Fry, R. C.; Starr, T. B. Formaldehyde carcinogenicity research: 30 years and counting for mode of action, epidemiology, and cancer risk assessment. Toxicol. Pathol. 2013, 41, 181–189.

    Google Scholar 

  9. Chen, N. H.; Djoko, K. Y.; Veyrier, F. J.; McEwan, A. G. Formaldehyde stress responses in bacterial pathogens. Front. Microbiol. 2016, 7, 257.

    CAS  Google Scholar 

  10. Jung, M.; Smogorzewska, A. Hematopoiesis and stem cells: Endogenous formaldehyde destroys blood stem cells. Blood 2021, 137, 1988–1990.

    CAS  Google Scholar 

  11. Rohlhill, J.; Har, J. R. G.; Antoniewicz, M. R.; Papoutsakis, E. T. Improving synthetic methylotrophy via dynamic formaldehyde regulation of pentose phosphate pathway genes and redox perturbation. Metab. Eng. 2020, 57, 247–255.

    CAS  Google Scholar 

  12. Lu, K.; Craft, S.; Nakamura, J.; Moeller, B. C.; Swenberg, J. A. Use of LC-MS/MS and stable isotopes to differentiate hydroxymethyl and methyl DNA adducts from formaldehyde and nitrosodimethylamine. Chem. Res. Toxicol. 2012, 25, 664–675.

    CAS  Google Scholar 

  13. Ma, B. K.; Xu, F. J.; He, M.; Lin, Y. Q.; Hu, G. H.; Zhang, M.; Zhao, X. Y.; Liu, W. L. Detection of residual formaldehyde in N-butyl-2-cyanoacrylate by high-performance liquid chromatography with rhodamine B hydrazide. Microchem. J. 2020, 154, 105222.

    Google Scholar 

  14. Cordis, G. A.; Bagchi, D.; Maulik, N.; Das, D. K. High-performance liquid chromatographic method for the simultaneous detection of malonaldehyde, acetaldehyde, formaldehyde, acetone and propionaldehyde to monitor the oxidative stress in heart. J. Chromatogr. A 1994, 661, 181–191.

    CAS  Google Scholar 

  15. Silva, A. F. S.; Goncalves, I. C.; Rocha, F. R. P. Smartphone-based digital images as a novel approach to determine formaldehyde as a milk adulterant. Food Control 2021, 125, 107956.

    CAS  Google Scholar 

  16. Wongniramaikul, W.; Limsakul, W.; Choodum, A. A biodegradable colorimetric film for rapid low-cost field determination of formaldehyde contamination by digital image colorimetry. Food Chem. 2018, 249, 154–161.

    CAS  Google Scholar 

  17. Bianchi, F.; Careri, M.; Musci, M.; Mangia, A. Fish and food safety: Determination of formaldehyde in 12 fish species by SPME extraction and GC-MS analysis. Food Chem. 2007, 100, 1049–1053.

    CAS  Google Scholar 

  18. Oancea, A.; Hanoune, B.; Focsa, C.; Chazallon, B. Cross determination of the vapor liquid equilibrium of formaldehyde aqueous solutions by quadrupole mass spectrometry and infrared diode laser spectroscopy. Environ. Sci. Technol. 2009, 43, 435–440.

    CAS  Google Scholar 

  19. Lipari, F.; Swarin, S. J. 2, 4-Dinitrophenylhydrazine-coated Florisil sampling cartridges for the determination of formaldehyde in air. Environ. Sci. Technol. 1985, 19, 70–74.

    Google Scholar 

  20. Bruemmer, K. J.; Brewer, T. F.; Chang, C. J. Fluorescent probes for imaging formaldehyde in biological systems. Curr. Opin. Chem. Biol. 2011, 39, 17–23.

    Google Scholar 

  21. Liu, X.; Li, N.; Li, M.; Chen, H.; Zhang, N. N.; Wang, Y. L.; Zheng, K. B. Recent progress in fluorescent probes for detection of carbonyl species: Formaldehyde, carbon monoxide and phosgene. Coord. Chem. Rev. 2020, 404, 213109.

    CAS  Google Scholar 

  22. Kumaravel, S.; Wu, S. H.; Chen, G. Z.; Huang, S. T.; Lin, C. M.; Lee, Y. C.; Chen, C. H. Development of ratiometric electrochemical molecular switches to assay endogenous formaldehyde in live cells, whole blood and creatinine in saliva. Biosens. Bioelectron. 2021, 171, 112720.

    CAS  Google Scholar 

  23. Hämmerle, M.; Hall, E. A. H.; Cade, N.; Hodgins, D. Electrochemical enzyme sensor for formaldehyde operating in the gas phase. Biosens. Bioelectron. 1996, 11, 239–246.

    Google Scholar 

  24. Sandler, S.; Strom, R. Determination of formaldehyde by gas chromatography. Anal. Chem. 1960, 32, 1890–1891.

    CAS  Google Scholar 

  25. Zhao, X. J.; Ji, C. D.; Ma, L.; Wu, Z.; Cheng, W. Y.; Yin, M. Z. An aggregation-induced emission-based “turn-on” fluorescent probe for facile detection of gaseous formaldehyde. ACS Sens. 2018, 3, 2112–2117.

    CAS  Google Scholar 

  26. Sun, X. X.; Zhang, H.; Hao, S.; Zhai, J. F.; Dong, S. J. A self-powered biosensor with a flake electrochromic display for electrochemical and colorimetric formaldehyde detection. ACS Sens. 2019, 4, 2631–2637.

    CAS  Google Scholar 

  27. Escudero, D. Revising intramolecular photoinduced electron transfer (PET) from first-principles. Acc. Chem. Res. 2016, 49, 1816–1824.

    CAS  Google Scholar 

  28. Bauer, A.; Westkämper, F.; Grimme, S.; Bach, T. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature 2005, 436, 1139–1140.

    CAS  Google Scholar 

  29. Dadashi-Silab, S.; Doran, S.; Yagci, Y. Photoinduced electron transfer reactions for macromolecular syntheses. Chem. Rev. 2016, 116, 10212–10275.

    CAS  Google Scholar 

  30. Allen, A. R.; Noten, E. A.; Stephenson, C. R. Aryl transfer strategies mediated by photoinduced electron transfer. Chem. Rev. 2022, 122, 2695–2751.

    CAS  Google Scholar 

  31. Gui, B.; Meng, Y.; Xie, Y.; Tian, J. W.; Yu, G.; Zeng, W. X.; Zhang, G. X.; Gong, S. L.; Yang, C. L.; Zhang, D. Q. et al. Tuning the photoinduced electron transfer in a Zr-MOF: Toward solid-state fluorescent molecular switch and turn-on sensor. Adv. Mater. 2018, 30, 1802329.

    Google Scholar 

  32. Yoshihara, T.; Druzhinin, S. I.; Zachariasse, K. A. Fast intramolecular charge transfer with a planar rigidized electron donor/acceptor molecule. J. Am. Chem. Soc. 2004, 126, 8535–8539.

    CAS  Google Scholar 

  33. Wang, C.; Qiao, Q. L.; Chi, W. J.; Chen, J.; Liu, W. J.; Tan, D.; McKechnie, S.; Lyu, D.; Jiang, X. F.; Zhou, W. et al. Quantitative design of bright fluorophores and AIEgens by the accurate prediction of twisted intramolecular charge transfer (TICT). Angew. Chem. 2020, 132, 10246–10258.

    Google Scholar 

  34. Qian, F.; Zhang, C. L.; Zhang, Y. M.; He, W. J.; Gao, X.; Hu, P.; Guo, Z. J. Visible light excitable Zn2+ fluorescent sensor derived from an intramolecular charge transfer fluorophore and its in vitro and in vivo application. J. Am. Chem. Soc. 2009, 131, 1460–1468.

    CAS  Google Scholar 

  35. Sedgwick, A. C.; Wu, L. L.; Han, H. H.; Bull, S. D.; He, X. P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 47, 8842–8880.

    CAS  Google Scholar 

  36. Jiang, G. W.; Jin, Y.; Li, M.; Wang, H. L.; Xiong, M. Y.; Zeng, W. L.; Yuan, H.; Liu, C. L.; Ren, Z. Q.; Liu, C. R. Faster and more specific: Excited-state intramolecular proton transfer-based dyes for high-fidelity dynamic imaging of lipid droplets within cells and tissues. Anal. Chem. 2020, 92, 10342–10349.

    CAS  Google Scholar 

  37. Seo, J.; Kim, S.; Park, S. Y. Strong solvatochromic fluorescence from the intramolecular charge-transfer state created by excited-state intramolecular proton transfer. J. Am. Chem. Soc. 2004, 126, 11154–11155.

    CAS  Google Scholar 

  38. Li, Y. H.; Dahal, D.; Abeywickrama, C. S.; Pang, Y. Progress in tuning emission of the excited-state intramolecular proton transfer (ESIPT)-based fluorescent probes. ACS Omega 2021, 6, 6547–6553.

    CAS  Google Scholar 

  39. Clegg, R. M. Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 1995, 6, 103–110.

    CAS  Google Scholar 

  40. Miao, Y. W.; Sathiyan, G.; Wang, H. X.; Tian, Y.; Chen, C.; Ding, X. D.; Zhai, M. D.; Yang, X. C.; Cheng, M. Construction of efficient perovskite solar cell through small-molecule synergistically assisted surface defect passivation and fluorescence resonance energy transfer. Chem. Eng. J. 2021, 426, 131358.

    CAS  Google Scholar 

  41. Wu, Y.; Yan, C. X.; Li, X. S.; You, L. H.; Yu, Z. Q.; Wu, X. F.; Zheng, Z. G.; Liu, G. F.; Guo, Z. Q.; Tian, H. et al. Circularly polarized fluorescence resonance energy transfer (C-FRET) for efficient chirality transmission within an intermolecular system. Angew. Chem. 2021, 133, 24754–24762.

    Google Scholar 

  42. Li, Y. B.; Wang, L.; Zhao, L. T.; Li, M.; Wen, Y. M. An fluorescence resonance energy transfer sensing platform based on signal amplification strategy of hybridization chain reaction and triplex DNA for the detection of Chloramphenicol in milk. Food Chem. 2021, 357, 129769.

    CAS  Google Scholar 

  43. Wu, J. S.; Liu, W. M.; Ge, J. C.; Zhang, H. Y.; Wang, P. F. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev. 2011, 40, 3483–3495.

    CAS  Google Scholar 

  44. Goodman, C. G.; Johnson, J. S. Asymmetric synthesis of β-amino amides by catalytic enantioconvergent 2-aza-cope rearrangement. J. Am. Chem. Soc. 2015, 137, 14574–14577.

    CAS  Google Scholar 

  45. Wei, L.; Chang, X.; Wang, C. J. Catalytic asymmetric reactions with N-metallated azomethine ylides. Acc. Chem. Res. 2020, 53, 1084–1100.

    CAS  Google Scholar 

  46. Roth, A.; Li, H.; Anorma, C.; Chan, J. A reaction-based fluorescent probe for imaging of formaldehyde in living cells. J. Am. Chem. Soc. 2015, 137, 10890–10893.

    CAS  Google Scholar 

  47. Brewer, T. F.; Chang, C. J. An aza-cope reactivity-based fluorescent probe for imaging formaldehyde in living cells. J. Am. Chem. Soc. 2015, 137, 10886–10889.

    CAS  Google Scholar 

  48. Lee, M. G.; Wynder, C.; Schmidt, D. M.; McCafferty, D. G.; Shiekhattar, R. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem. Biol. 2006, 13, 563–567.

    CAS  Google Scholar 

  49. Liu, J.; Liu, F. Y.; Tong, Z. Q.; Li, Z. H.; Chen, W.; Luo, W. H.; Li, H.; Luo, H. J.; Tang, Y.; Tang, J. M. et al. Lysine-specific demethylase 1 in breast cancer cells contributes to the production of endogenous formaldehyde in the metastatic bone cancer pain model of rats. PLoS One 2013, 8, e58957.

    CAS  Google Scholar 

  50. Stazi, G.; Zwergel, C.; Valente, S.; Mai, A. LSD1 inhibitors: A patent review (2010–2015). Expert Opin. Ther. Pat. 2016, 26, 565–580.

    CAS  Google Scholar 

  51. Chen, J.; Shao, C. W.; Wang, X. A.; Gu, J.; Zhu, H. L.; Qian, Y. Imaging of formaldehyde fluxes in epileptic brains with a two-photon fluorescence probe. Chem. Commun. 2020, 56, 3871–3874.

    CAS  Google Scholar 

  52. Vu, H. T.; Akatsu, H.; Hashizume, Y.; Setou, M.; Ikegami, K. Increase in α-tubulin modifications in the neuronal processes of hippocampal neurons in both kainic acid-induced epileptic seizure and Alzheimer’s disease. Sci. Rep. 2017, 7, 40205.

    CAS  Google Scholar 

  53. Du, Y. M.; Zhang, Y. Q.; Huang, M. R.; Wang, S. S.; Wang, J. Z.; Liao, K. K.; Wu, X. J.; Zhou, Q.; Zhang, X. H.; Wu, Y. D. et al. Systematic investigation of the aza-cope reaction for fluorescence imaging of formaldehyde in vitro and in vivo. Chem. Sci. 2021, 12, 13857–13869.

    CAS  Google Scholar 

  54. Zhang, Y. Q.; Du, Y. M.; Li, M. J.; Zhang, D.; Xiang, Z.; Peng, T. Activity-based genetically encoded fluorescent and luminescent probes for detecting formaldehyde in living cells. Angew. Chem. 2020, 132, 16494–16498.

    Google Scholar 

  55. Liu, C. L.; Zhang, R.; Zhang, W. Z.; Liu, J. P.; Wang, Y. L.; Du, Z. B.; Song, B.; Xu, Z. P.; Yuan, J. L. “Dual-key-and-lock” ruthenium complex probe for lysosomal formaldehyde in cancer cells and tumors. J. Am. Chem. Soc. 2019, 141, 8462–8472.

    CAS  Google Scholar 

  56. Mindell, J. A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 2012, 74, 69–86.

    CAS  Google Scholar 

  57. Quan, T. T.; Liang, Z. H.; Pang, H. T.; Zeng, G. L.; Chen, T. S. A ratiometric ESIPT probe based on 2-aza-cope rearrangement for rapid and selective detection of formaldehyde in living cells. Analyst 2022, 147, 252–261.

    CAS  Google Scholar 

  58. Song, H.; Rajendiran, S.; Kim, N.; Jeong, S. K.; Koo, E.; Park, G.; Thangadurai, T. D.; Yoon, S. A tailor designed fluorescent “turn-on” sensor of formaldehyde based on the BODIPY motif. Tetrahedron Lett. 2012, 53, 4913–4916.

    CAS  Google Scholar 

  59. Ding, N.; Li, Z.; Hao, Y. T.; Yang, X. B. A new amine moiety-based near-infrared fluorescence probe for detection of formaldehyde in real food samples and mice. Food Chem. 2022, 384, 132426.

    CAS  Google Scholar 

  60. He, X. Y.; Hu, Y. M.; Shi, W.; Li, X. H.; Ma, H. M. Design, synthesis and application of a near-infrared fluorescent probe for in vivo imaging of aminopeptidase N. Chem. Commun. 2017, 53, 9438–9441.

    CAS  Google Scholar 

  61. Wang, T. N.; Douglass Jr, E. F.; Fitzgerald, K. J.; Spiegel, D. A. A “turn-on” fluorescent sensor for methylglyoxal. J. Am. Chem. Soc. 2013, 135, 12429–12433.

    CAS  Google Scholar 

  62. Wang, W. L.; Chen, J. L.; Ma, H. J.; Xing, W. J.; Lv, N.; Zhang, B. N.; Xu, H.; Wang, W.; Lou, K. Y. An “AND”llogic-gaee-based fluorescent probe with dual reactive sites for monitoring extracellular methylglyoxal level changes of activated macrophages. Chem. Commun. 2021, 57, 8166–8169.

    CAS  Google Scholar 

  63. Cai, S. T.; Liu, C.; Jiao, X. J.; Zhao, L. C.; Zeng, X. S. A rational design of fluorescent probes for specific detection and imaging of endogenous formaldehyde in living cells. Tetrahedron 2020, 72, 131617.

    Google Scholar 

  64. Cai, S. T.; Liu, C.; Gong, J.; He, S.; Zhao, L. C.; Zeng, X. S. A lysosome-targeted fluorescent probe for the specific detection and imaging of formaldehyde in living cells. Spectrochim. Acta Part A 2021, 245, 118949.

    CAS  Google Scholar 

  65. Jana, A.; Joseph, M. M.; Munan, S.; Shamna, K.; Maiti, K. K.; Samanta, A. A single benzene fluorescent probe for efficient formaldehyde sensing in living cells using glutathione as an amplifier. J. Photochem. Photobiol. B 2021, 214, 112091.

    CAS  Google Scholar 

  66. Liu, C.; Jiao, X. J.; He, S.; Zhao, L. C.; Zeng, X. S. A reaction-based fluorescent probe for the selective detection of formaldehyde and methylglyoxal via distinct emission patterns. Dyes Pigm. 2017, 138, 23–29.

    CAS  Google Scholar 

  67. Tang, Y. H.; Kong, X. Q.; Xu, A.; Dong, B. L.; Lin, W. Y. Development of a two-photon fluorescent probe for imaging of endogenous formaldehyde in living tissues. Angew. Chem. 2016, 55, 3356–3359.

    CAS  Google Scholar 

  68. Tang, Y. H.; Kong, X. Q.; Liu, Z. R.; Xu, A.; Lin, W. Y. Lysosome-targeted turn-on fluorescent probe for endogenous formaldehyde in living cells. Anal. Chem. 2016, 88, 9359–9363.

    CAS  Google Scholar 

  69. Tang, Y. H.; Ma, Y. Y.; Xu, A.; Xu, G. P.; Lin, W. Y. A turn-on fluorescent probe for endogenous formaldehyde in the endoplasmic reticulum of living cells. Methods Appl. Fluoresc. 2017, 5, 024005.

    Google Scholar 

  70. Zhang, Y. B.; Qiu, X. Y.; Sun, L.; Yan, Q.; Luck, R. L.; Liu, H. Y. A two-photon fluorogenic probe based on a coumarin schiff base for formaldehyde detection in living cells. Spectrochim. Acta Part A 2022, 274, 121074.

    CAS  Google Scholar 

  71. Li, J. F.; Ding, D. H.; Song, W. H.; Wang, J. Y.; Quan, W.; Huang, L.; Lin, W. Y. Visualization of endogenous formaldehyde in the nucleus via a robust activatable fluorescent probe. Sens. Actuators B 2022, 368, 132136.

    CAS  Google Scholar 

  72. Chen, S.; Jia, Y.; Zou, G. Y.; Yu, Y. L.; Wang, J. H. A ratiometric fluorescent nanoprobe based on naphthalimide derivative-functionalized carbon dots for imaging lysosomal formaldehyde in HeLa cells. Nanoscale 2019, 11, 6377–6383.

    CAS  Google Scholar 

  73. Shuang, E.; Mao, Q. X.; Yuan, X. L.; Kong, X. L.; Chen, X. W.; Wang, J. H. Targeted imaging of the lysosome and endoplasmic reticulum and their pH monitoring with surface regulated carbon dots. Nanoscale 2018, 10, 12788–12796.

    CAS  Google Scholar 

  74. Hua, X. W.; Bao, Y. W.; Wu, F. G. Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl. Mater. Interfaces 2018, 10, 10664–10677.

    CAS  Google Scholar 

  75. Zou, G. Y.; Guo, L.; Chen, S.; Liu, N. Z.; Yu, Y. L. Multifunctional ratiometric fluorescent sensing platform constructed by grafting various response groups on carbon dots with bromine active site for biosensing and bioimaging. Sens. Actuators B 2022, 357, 131376.

    CAS  Google Scholar 

  76. Yang, L. N.; Han, Q. X.; Ling, X. L.; Wang, Y. S.; Li, M. H.; Chen, Q. L.; Wang, X. C. N-butyl-4-hydrazino-1,8-naphthalimide-loaded chitosan self-assembled nanoparticles as fluorescent ratiometric chemosensors for detection of formaldehyde. ACS Appl. Nano Mater. 2022, 5, 7392–7401.

    CAS  Google Scholar 

  77. Chen, H. W.; Li, H.; Song, Q. H. BODIPY-substituted hydrazine as a fluorescent probe for rapid and sensitive detection of formaldehyde in aqueous solutions and in live cells. ACS Omega 2018, 3, 18189–18195.

    CAS  Google Scholar 

  78. Han, B. C.; Sun, J.; Chen, K.; Chen, Z. Y.; Huang, M. H.; Gao, Z. Z.; Hou, X. F. A novel fluorescent probe for formaldehyde based-on monomer-excimer conversion and its imaging in live cells. Tetrahedron 2018, 74, 7193–7197.

    CAS  Google Scholar 

  79. Kaanumalle, L. S.; Gibb, C. L. D.; Gibb, B. C.; Ramamurthy, V. A hydrophobic nanocapsule controls the photophysics of aromatic molecules by suppressing their favored solution pathways. J. Am. Chem. Soc. 2005, 127, 3674–3675.

    CAS  Google Scholar 

  80. Das, A.; Danao, A.; Banerjee, S.; Raj, A. M.; Sharma, G.; Prabhakar, R.; Srinivasan, V.; Ramamurthy, V.; Sen, P. Dynamics of anthracene excimer formation within a water-soluble nanocavity at room temperature. J. Am. Chem. Soc. 2021, 143, 2025–2036.

    CAS  Google Scholar 

  81. Karuppannan, S.; Chambron, J. C. Supramolecular chemical sensors based on pyrene monomer-excimer dual luminescence. Chem. Asian J. 2011, 6, 964–984.

    CAS  Google Scholar 

  82. Wu, F.; Zhang, Y.; Huang, L.; Xu, D.; Wang, H. Y. A fluorescence-enhanced probe for rapid detection of formaldehyde and its application for cell imaging. Anal. Methods 2011, 9, 5472–5477.

    Google Scholar 

  83. Cheng, H. R.; Zou, L. W.; Yang, L.; Wang, Z. G.; Lu, X. J. A turn-on fluorescence probe for rapid, sensitive and visual detection of formaldehyde. ChemistrySelect 2019, 4, 432–436.

    CAS  Google Scholar 

  84. Zhu, R. F.; Zhang, G.; Jing, M.; Han, Y.; Li, J. F.; Zhao, J. Y.; Li, Y. L.; Chen, P. R. Genetically encoded formaldehyde sensors inspired by a protein intra-helical crosslinking reaction. Nat. Commun. 2021, 12, 581.

    CAS  Google Scholar 

  85. He, L. W.; Yang, X. L.; Ren, M. G.; Kong, X. Q.; Liu, Y.; Lin, W. Y. An ultra-fast illuminating fluorescent probe for monitoring formaldehyde in living cells, shiitake mushrooms, and indoors. Chem. Commun. 2016, 52, 9582–9585.

    CAS  Google Scholar 

  86. Xu, H.; Xu, H.; Ma, S. N.; Chen, X. N.; Huang, L. X.; Chen, J. W.; Gao, F.; Wang, R.; Lou, K. Y.; Wang, W. Analyte regeneration fluorescent probes for formaldehyde enabled by regiospecific formaldehyde-induced intramolecularity. J. Am. Chem. Soc. 2018, 140, 16408–16412.

    CAS  Google Scholar 

  87. Bi, A. Y.; Liu, M.; Huang, S.; Zheng, F.; Ding, J. P.; Wu, J. Y.; Tang, G.; Zeng, W. B. Construction and theoretical insights into the ESIPT fluorescent probe for imaging formaldehyde in vitro and in vivo. Chem. Commun. 2021, 57, 3496–3499.

    CAS  Google Scholar 

  88. Ma, Y. Y.; Gao, W. J.; Zhu, L. L.; Zhao, Y. P.; Lin, W. Y. Development of a unique reversible fluorescent probe for tracking endogenous sulfur dioxide and formaldehyde fluctuation in vivo. Chem. Commun. 2019, 55, 11263–11266.

    CAS  Google Scholar 

  89. Wang, M. Z.; Liu, Q. L.; Sun, X.; Zheng, S.; Ma, Y. Y.; Wang, Y.; Yan, M.; Lu, Z. L.; Fan, C. H.; Lin, W. Y. Ratiometric and reversible detection of endogenous SO2 and HCHO in living cells and mice by a near-infrared and dual-emission fluorescent probe. Sens. Actuators B 2021, 335, 129649.

    CAS  Google Scholar 

  90. Zhu, H. C.; Zhang, X.; Liu, C. Y.; Zhang, Y.; Su, M. J.; Rong, X. D.; Wang, X.; Liu, M. Y.; Zhang, X. H.; Sheng, W. L. et al. A reversible NIR fluorescent probe for monitoring of SO2 and formaldehyde in live cells and zebrafish. Sens. Actuators B 2022, 366, 131962.

    CAS  Google Scholar 

  91. Tang, Y. H.; Ma, Y. Y.; Yin, J. L.; Lin, W. Y. Strategies for designing organic fluorescent probes for biological imaging of reactive carbonyl species. Chem. Soc. Rev. 2019, 48, 4036–4048.

    CAS  Google Scholar 

  92. Sun, Y. Q.; Sun, P. J.; Li, Z. H.; Qu, L. H.; Guo, W. Natural flavylium-inspired far-red to NIR-II dyes and their applications as fluorescent probes for biomedical sensing. Chem. Soc. Rev. 2022, 51, 7170–7205.

    CAS  Google Scholar 

  93. Huang, S. M.; Li, Z. J.; Liu, M. H.; Zhou, M. J.; Weng, J. T.; He, Y.; Jiang, Y.; Zhang, H. T.; Sun, H. Y. Reaction-based fluorescent and chemiluminescent probes for formaldehyde detection and imaging. Chem. Commun. 2022, 58, 1442–1453.

    CAS  Google Scholar 

  94. Yao, S.; Belfield, K. D. Two-photon fluorescent probes for bioimaging. Eur. J. Org. Chem. 2012, 2012, 3199–3217.

    CAS  Google Scholar 

  95. Niu, W. F.; Guo, L.; Li, Y. H.; Shuang, S. M.; Dong, C.; Wong, M. S. Highly selective two-photon fluorescent probe for ratiometric sensing and imaging cysteine in mitochondria. Anal. Chem. 2016, 88, 1908–1914.

    CAS  Google Scholar 

  96. Jiang, L. R.; Hu, Q.; Chen, T. H.; Min, D. Y.; Yuan, H. Q.; Bao, G. M. Highly sensitive and rapid responsive fluorescence probe for determination of formaldehyde in seafood and in vivo imaging application. Spectrochim. Acta Part A 2020, 228, 117789.

    CAS  Google Scholar 

  97. Ding, N.; Li, Z.; Hao, Y. T.; Zhang, C. X. Design of a new hydrazine moiety-based near-infrared fluorescence probe for detection and imaging of endogenous formaldehyde in vivo. Anal. Chem. 2022, 94, 12120–12126.

    CAS  Google Scholar 

  98. Wang, P. Z.; Cheng, X. H.; Xiong, J. H.; Mao, Z. Q.; Liu, Z. H. Revealing formaldehyde fluxes in Alzheimer’s disease brain by an activity-based fluorescence probe. Chin. J. Chem. 2022, 40, 1457–1463.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 52173138), Natural Science Foundation of Hubei Province (No. 2021CFB298), and Natural Science Foundation of Shandong Province (No. ZR2021ME015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zeng-Ying Qiao or Dong-Bing Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, NB., Hu, XJ., Wang, F. et al. Endogenous formaldehyde responsive fluorescent probe for bioimaging. Nano Res. 16, 13029–13041 (2023). https://doi.org/10.1007/s12274-023-5766-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5766-z

Keywords

Navigation