Skip to main content
Log in

Dynamically modulated synthesis of hollow metal-organic frameworks for selective hydrogenation reactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hollow metal-organic frameworks (MOFs) have attracted increasing attention in the field of catalysis in recent years due to their unique cavity structure with fast mass-diffusion rates and easily accessible active sites. Here, we report the use of dynamic modulators, which are formed by the in-situ imine condensation reaction of 4-aminobenzoic acid and 4-formylbenzoic acid, to regulate the growth of MOFs to synthesize well-defined hollow thioether functionalized UiO-67 (denoted as H-UiO-67-S) single crystals. After supporting Pd nanoparticles, the designed catalysts Pd@H-UiO-67-S show excellent conversion (> 99.9%), selectivity (> 99.9%), and stability (10 cycles) in the selective hydrogenation of nitrobenzenes with other reducible groups. Density functional theory calculations and the experimental results reveal that Pd nanoparticles not only selectively adsorb the nitro-groups on nitrobenzene, but also restrict the adsorption of the aniline product, due to the interaction of thioether with Pd in the confined pores of H-UiO-67-S, finally result in a significant increase in selectivity of nitro-hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ye, T. N.; Lu, Y. F.; Li, J.; Nakao, T.; Yang, H. S.; Tada, T.; Kitano, M.; Hosono, H. Copper-based intermetallic electride catalyst for chemoselective hydrogenation reactions. J. Am. Chem. Soc. 2017, 139, 17089–17097.

    CAS  Google Scholar 

  2. Gao, M. L.; Li, L. Y.; Sun, Z. X.; Li, J. R.; Jiang, H. L. Facet engineering of a metal-organic framework support modulates the microenvironment of palladium nanoparticles for selective hydrogenation. Angew. Chem., Int. Ed. 2022, 61, e202211216.

    CAS  Google Scholar 

  3. Wu, Z. Y.; Nan, H.; Shen, S. C.; Chen, M. X.; Liang, H. W.; Huang, C. Q.; Yao, T.; Chu, S. Q.; Li, W. X.; Yu, S. H. Incorporating sulfur atoms into palladium catalysts by reactive metal–support interaction for selective hydrogenation. CCS Chem. 2022, 4, 3051–3063.

    CAS  Google Scholar 

  4. Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Scincee 2006, 313, 332–334.

    CAS  Google Scholar 

  5. Chen, Y. Y.; Wang, C.; Liu, H. Y.; Qiu, J. S.; Bao, X. H. Ag/SiO2: A novel catalyst with high activity and selectivity for hydrogenation of chloronitrobenzenes. Chem. Commun. 2005, 5298–5300.

  6. Sun, X. H.; Olivos-Suarez, A. I.; Osadchii, D.; Romero, M. J. V.; Kapteijn, F.; Gascon, J. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. J. Catal. 2018, 357, 20–28.

    Google Scholar 

  7. Guo, S. L.; Yuan, H.; Luo, W.; Liu, X. Q.; Zhang, X. T.; Jiang, H. Q.; Liu, F.; Cheng, G. J. Isolated atomic catalysts encapsulated in MOF for ultrafast water pollutant treatment. Nano Res. 2021, 14, 1287–1293.

    CAS  Google Scholar 

  8. Zhang, J.; Wang, L.; Shao, Y.; Wang, Y. Q.; Gates, B. C.; Xiao, F. S. A Pd@zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores. Angew. Chem., Int. Ed. 2017, 56, 9747–9751.

    CAS  Google Scholar 

  9. Cárdenas-Lizana, F.; Hao, Y. F.; Crespo-Quesada, M.; Yuranov, I.; Wang, X. D.; Keane, M. A. Kiwi-Minsker, L. Selective gas phase hydrogenation of p-chloronitrobenzene over Pd catalysts: Role of the support. ACS Catal. 2013, 3, 1386–1396.

    Google Scholar 

  10. Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.

    Google Scholar 

  11. Li, L. Y.; Li, Z. X.; Yang, W. J.; Huang, Y. M.; Huang, G.; Guan, Q. Q.; Dong, Y. M.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Integration of Pd nanoparticles with engineered pore walls in MOFs for enhanced catalysis. Chem 2021, 7, 686–698.

    CAS  Google Scholar 

  12. Macino, M.; Barnes, A. J.; Althahban, S. M.; Qu, R. Y.; Gibson, E. K.; Morgan, D. J.; Freakley, S. J.; Dimitratos, N.; Kiely, C. J.; Gao, X. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2019, 2, 873–881.

    CAS  Google Scholar 

  13. Li, S. P.; Du, J.; Zhang, B.; Liu, Y. Z.; Mei, Q. Q.; Meng, Q. L.; Dong, M. H.; Du, J.; Zhao, Z. J.; Zheng, L. R. et al. Selective hydrogenation of 5-(hydroxymethyl)furfural to 5-methylfurfural by exploiting the synergy between steric hindrance and hydrogen spillover. Acta Phys. Chim. Sin. 2022, 38, 2206019.

    Google Scholar 

  14. Makosch, M.; Lin, W. I.; Bumbálek, V.; Sá, J.; Medlin, J. W.; Hungerbühler, K.; van Bokhoven, J. A. Organic thiol modified Pt/TiO2 catalysts to control chemoselective hydrogenation of substituted nitroarenes. ACS Catal. 2012, 2, 2079–2081.

    CAS  Google Scholar 

  15. Wu, Q. F.; Zhang, B.; Zhang, C.; Meng, X. C.; Su, X.; Jiang, S.; Shi, R. H.; Li, Y.; Lin, W. W.; Arai, M. et al. Significance of surface oxygen-containing groups and heteroatom P species in switching the selectivity of Pt/C catalyst in hydrogenation of 3-nitrostyrene. J. Catal. 2018, 364, 297–307.

    CAS  Google Scholar 

  16. Li, H. L.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.

    CAS  Google Scholar 

  17. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.

    CAS  Google Scholar 

  18. Guo, J.; Qin, Y. T.; Zhu, Y. F.; Zhang, X. F.; Long, C.; Zhao, M. T.; Tang, Z. Y. Metal-organic frameworks as catalytic selectivity regulators for organic transformations. Chem. Soc. Rev. 2021, 50, 5366–5396.

    CAS  Google Scholar 

  19. Zhu, J.; Chen, X. Y.; Thang, A. Q.; Li, F. L.; Chen, D.; Geng, H. B.; Rui, X. H.; Yan, Q. Y. Vanadium-based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. SmartMat 2022, 3, 384–416.

    CAS  Google Scholar 

  20. Qin, Y. T.; Guo, J.; Zhao, M. T. Metal-organic framework-based solid acid materials for biomass upgrade. Trans. Tianjin Univ. 2021, 27, 434–449.

    CAS  Google Scholar 

  21. Liao, Y. J.; Zhao, K.; Yang, J. H.; An, X. F.; Zhang, P.; Dou, Y. H.; Zhao, M. T.; Fu, D. Hetero-shelled hollow structure coupled with non-thermal plasma inducing spatial charge rearrangement for superior NO conversion and sulfur resistance. Small 2022, 18, 2106680.

    CAS  Google Scholar 

  22. Wang, Y. Q.; Zhong, Z. X.; Liu, T. K.; Liu, G. L.; Hong, X. L. Cu@UiO-66 derived Cu+–ZrO2 interfacial sites for efficient CO2 hydrogenation to methanol. Acta Phys. Chim. Sin. 2021, 37, 2007089.

    Google Scholar 

  23. Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

    CAS  Google Scholar 

  24. Li, L. Y.; Li, Y. X.; Jiao, L.; Liu, X. S.; Ma, Z. T.; Zeng, Y. J.; Zheng, X. S.; Jiang, H. L. Light-induced selective hydrogenation over PdAg nanocages in hollow MOF microenvironment. J. Am. Chem. Soc. 2022, 144, 17075–17085.

    CAS  Google Scholar 

  25. Qin, N. Q.; Pan, A.; Yuan, J.; Ke, F.; Wu, X. Y.; Zhu, J.; Liu, J. Q.; Zhu, J. F. One-step construction of a hollow Au@bimetal-organic framework core–shell catalytic nanoreactor for selective alcohol oxidation reaction. ACS Appl. Mater. Interfaces 2021, 13, 12463–12471.

    CAS  Google Scholar 

  26. Yang, H. Z.; Wang, X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.

    Google Scholar 

  27. Liu, D.; Wan, J. W.; Pang, G. S.; Tang, Z. Y. Hollow metal-organic-framework micro/nanostructures and their derivatives: Emerging multifunctional materials. Adv. Mater. 2019, 31, 1803291.

    Google Scholar 

  28. Qiu, T. J.; Gao, S.; Liang, Z. B.; Wang, D. G.; Tabassum, H.; Zhong, R. Q.; Zou, R. Q. Pristine hollow metal-organic frameworks: Design, synthesis and application. Angew. Chem., Int. Ed. 2021, 60, 17314–17336.

    CAS  Google Scholar 

  29. Pang, M. L.; Cairns, A. J.; Liu, Y. L.; Belmabkhout, Y.; Zeng, H. C.; Eddaoudi, M. Synthesis and integration of Fe-soc-MOF cubes into colloidosomes via a single-step emulsion-based approach. J. Am. Chem. Soc. 2013, 135, 10234–10237.

    CAS  Google Scholar 

  30. Zhao, Y. Q.; Ni, X. J.; Ye, S. J.; Gu, Z. G.; Li, Y. X.; Ngai, T. A smart route for encapsulating Pd nanoparticles into a ZIF-8 hollow microsphere and their superior catalytic properties. Langmuir 2020, 36, 2037–2043.

    CAS  Google Scholar 

  31. Kim, H.; Lah, M. S. Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures. Dalton Trans. 2017, 46, 6146–6158.

    CAS  Google Scholar 

  32. Chen, Y. M.; Yu, L.; Lou, X. W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem., Int. Ed. 2016, 55, 5990–5993.

    CAS  Google Scholar 

  33. Liu, W. X.; Huang, J. J.; Yang, Q.; Wang, S. J.; Sun, X. M.; Zhang, W. N.; Liu, J. F.; Huo, F. W. Multi-shelled hollow metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 5512–5516.

    CAS  Google Scholar 

  34. Zhang, W.; Jiang, X. F.; Zhao, Y. Y.; Carné-Sánchez, A.; Malgras, V.; Kim, J.; Kim, J. H.; Wang, S. B.; Liu, J.; Jiang, J. S. et al. Hollow carbon nanobubbles: Monocrystalline MOF nanobubbles and their pyrolysis. Chem. Sci. 2017, 8, 3538–3546.

    CAS  Google Scholar 

  35. He, T.; Chen, S. M.; Ni, B.; Gong, Y.; Wu, Z.; Song, L.; Gu, L.; Hu, W. P.; Wang, X. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew. Chem., Int. Ed. 2018, 57, 3493–3498.

    CAS  Google Scholar 

  36. He, T.; Xu, X. B.; Ni, B.; Lin, H. F.; Li, C. Z.; Hu, W. P.; Wang, X. Metal-organic framework based microcapsules. Angew. Chem., Int. Ed. 2018, 57, 10148–10152.

    CAS  Google Scholar 

  37. Yang, D. R.; Yu, H. D.; He, T.; Zuo, S. W.; Liu, X. Z.; Yang, H. Z.; Ni, B.; Li, H. Y.; Gu, L.; Wang, D. et al. Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nat. Commun. 2019, 10, 3844.

    Google Scholar 

  38. Zhang, Z. C.; Chen, Y. F.; Xu, X. B.; Zhang, J. C.; Xiang, G. L.; He, W.; Wang, X. Well-defined metal-organic framework hollow nanocages. Angew. Chem., Int. Ed. 2014, 53, 429–433.

    CAS  Google Scholar 

  39. Zhang, Z. C.; Chen, Y. F.; He, S.; Zhang, J. C.; Xu, X. B.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem., Int. Ed. 2014, 53, 12517–12521.

    CAS  Google Scholar 

  40. Bai, Y.; Dou, Y. B.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327–2367.

    CAS  Google Scholar 

  41. Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

    Google Scholar 

  42. Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1–28.

    Google Scholar 

  43. Kim, J.; Nam, D.; Kitagawa, H.; Lim, D. W.; Choe, W. Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry. Nano Res. 2021, 14, 392–397.

    CAS  Google Scholar 

  44. Xu, Z. M.; Cao, J. Z.; Chen, X.; Shi, L. Y.; Bian, Z. F. Enhancing photocatalytic performance of NH2-UIO66 by defective structural engineering. Trans. Tianjin Univ. 2021, 2–7, 147–154.

    Google Scholar 

  45. Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem.Eur. J. 2011, 17, 6643–6651.

    CAS  Google Scholar 

  46. Trickett, C. A.; Gagnon, K. J.; Lee, S.; Gándara, F.; Bürgi, H. B.; Yaghi, O. M. Definitive molecular level characterization of defects in UiO-66 crystals. Angew. Chem., Int. Ed. 2015, 54, 11162–11167.

    CAS  Google Scholar 

  47. Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611–8638.

    CAS  Google Scholar 

  48. Qin, Y. T.; Li, Z. X.; Duan, Y. L.; Guo, J.; Zhao, M. T.; Tang, Z. Y. Nanostructural engineering of metal-organic frameworks: Construction strategies and catalytic applications. Matter 2022, 5, 3260–3310.

    CAS  Google Scholar 

  49. Das, M. K.; Bobb, J. A.; Ibrahim, A. A.; Lin, A.; AbouZeid, K. M.; El-Shall, M. S. Green synthesis of oxide-supported Pd nanocatalysts by laser methods for room-temperature carbon–carbon cross-coupling reactions. ACS Appl. Mater. Interfaces 2020, 12, 23844–23852.

    CAS  Google Scholar 

  50. Raza, F.; Yim, D.; Park, J. H.; Kim, H. I.; Jeon, S. J.; Kim, J. H. Structuring Pd nanoparticles on 2H-WS2 nanosheets induces excellent photocatalytic activity for cross-coupling reactions under visible light. J. Am. Chem. Soc. 2017, 139, 14767–14774.

    CAS  Google Scholar 

  51. Zhang, Z. C.; Liu, Y.; Chen, B.; Gong, Y.; Gu, L.; Fan, Z. X.; Yang, N. L.; Lai, Z. C.; Chen, Y.; Wang, J. et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Adv. Mater. 2016, 28, 10282–10286.

    CAS  Google Scholar 

  52. Li, Z. X.; Hu, M. L.; Liu, J. H.; Wang, W. W.; Li, Y. J.; Fan, W. B.; Gong, Y. X.; Yao, J. S.; Wang, P.; He, M. et al. Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site. Nano Res. 2022, 15, 1983–1992.

    CAS  Google Scholar 

  53. Zhao, X. J.; Zhou, L. Y.; Zhang, W. Y.; Hu, C. Y.; Dai, L.; Ren, L. T.; Wu, B. H.; Fu, G.; Zheng, N. F. Thiol treatment creates selective palladium catalysts for semihydrogenation of internal alkynes. Chem 2018, 4, 1080–1091.

    CAS  Google Scholar 

  54. Lu, T. Y.; Li, T. F.; Shi, D. S.; Sun, J. L.; Pang, H.; Xu, L.; Yang, J.; Tang, Y. W. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N,S-doped carbon hollow nanospheres: Interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat 2021, 2, 591–602.

    CAS  Google Scholar 

  55. Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

    CAS  Google Scholar 

  56. Jing, W. T.; Shen, H.; Qin, R. X.; Wu, Q. Y.; Liu, K. L.; Zheng, N. F. Surface and interface coordination chemistry learned from model heterogeneous metal nanocatalysts: From atomically dispersed catalysts to atomically precise clusters. Chem. Rev., in press, https://doi.org/10.1021/acs.chemrev.2c00569.

  57. Gao, Y.; Yang, R.; Wang, C. H.; Liu, C. B.; Wu, Y. M.; Li, H. Z.; Zhang, B. Field-induced reagent concentration and sulfur adsorption enable efficient electrocatalytic semihydrogenation of alkynes. Sci. Adv. 2022, 8, eabm9477.

    Google Scholar 

  58. Li, H. Z.; Gao, Y.; Wu, Y. M.; Liu, C. B.; Cheng, C. Q.; Chen, F. P.; Shi, Y. M.; Zhang, B. σ-Alkynyl adsorption enables electrocatalytic semihydrogenation of terminal alkynes with easy-reducible/passivated groups over amorphous PdSx nanocapsules. J. Am. Chem. Soc. 2022, 144, 19456–19465.

    CAS  Google Scholar 

  59. Ling, L. L.; Yang, W. J.; Yan, P.; Wang, M.; Jiang, H. L. Lightassisted CO2 hydrogenation over Pd3Cu@UiO-66 promoted by active sites in close proximity. Angew. Chem., Int. Ed. 2022, 61, e202116396.

    CAS  Google Scholar 

  60. An, B.; Zhang, J. Z.; Cheng, K.; Ji, P. F.; Wang, C.; Lin, W. B. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 2017, 139, 3834–3840.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 21905195, M. T. Z. and 22103055, J. G.), Natural Science Foundation of Tianjin City (No. 20JCYBJC00800, M. T. Z.), Science and Technology Plans of Tianjin (No. 21ZYJDJC00050, J. G.), and PEIYANG Young Scholars Program of Tianjin University (No. 2020XRX-0023, M. T. Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiting Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Cheng, C., Li, Z. et al. Dynamically modulated synthesis of hollow metal-organic frameworks for selective hydrogenation reactions. Nano Res. 16, 11334–11341 (2023). https://doi.org/10.1007/s12274-023-5750-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5750-7

Keywords

Navigation