Skip to main content
Log in

Bioinspired nanomaterials for wearable sensing and human-machine interfacing

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The inculcation of bioinspiration in sensing and human-machine interface (HMI) technologies can lead to distinctive characteristics such as conformability, low power consumption, high sensitivity, and unique properties like self-healing, self-cleaning, and adaptability. Both sensing and HMI are fields rife with opportunities for the application of bioinspired nanomaterials, particularly when it comes to wearable sensory systems where biocompatibility is an additional requirement. This review discusses recent development in bioinspired nanomaterials for wearable sensing and HMIs, with a specific focus on state-of-the-art bioinspired capacitive sensors, piezoresistive sensors, piezoelectric sensors, triboelectric sensors, magnetoelastic sensors, and electrochemical sensors. We also present a comprehensive overview of the challenges that have hindered the scientific advancement in academia and commercialization in the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Su, Y. J.; Liu, Y. L.; Li, W. X.; Xiao, X.; Chen, C. X.; Lu, H. J.; Yuan, Z.; Tai, H. L.; Jiang, Y. D.; Zou, J. et al. Sensing-transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Mater. Horiz. 2023, 10, 842–851.

    Article  CAS  PubMed  Google Scholar 

  2. Luo, Y. F.; Abidian, M. R.; Ahn, J. H.; Akinwande, D.; Andrews, A. M.; Antonietti, M.; Bao, Z. N.; Berggren, M.; Berkey, C. A.; Bettinger, C. J. et al. Technology roadmap for flexible sensors. ACS Nano 2023, 17, 5211–5295.

    Article  CAS  PubMed  Google Scholar 

  3. Gao, Z. Y.; Xiao, X.; Di Carlo, A.; Yin, J. Y.; Wang, Y. X.; Huang, L. J.; Tang, J. G.; Chen, J. Advances in wearable strain sensors based on electrospun fibers. Adv. Funct. Mater 2023, 2214265.

  4. Mayer, M.; Xiao, X.; Yin, J. Y.; Chen, G. R.; Xu, J.; Chen, J. Advances in bioinspired triboelectric nanogenerators. Adv. Electron. Mater. 2022, 8, 2200782.

    Article  CAS  Google Scholar 

  5. Wang, S. L.; Deng, W. L.; Yang, T.; Tian, G.; Xiong, D.; Xiao, X.; Zhang, H. R.; Sun, Y.; Ao, Y.; Huang, J. F. et al. Body-area sensor network featuring micropyramids for sports healthcare. Nano Res. 2023, 16, 1330–1337.

    Article  ADS  Google Scholar 

  6. Kim, S.; Xiao, X.; Chen, J. Advances in photoplethysmography for personalized cardiovascular monitoring. Biosensors 2022, 12, 863.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yan, Z. C.; Xu, D.; Lin, Z. Y.; Wang, P. Q.; Cao, B. C.; Ren, H. Y.; Song, F.; Wan, C. Z.; Wang, L. Y.; Zhou, J. X. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 2022, 375, 852–859.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Yin, R. Y.; Wang, D. P.; Zhao, S. F.; Lou, Z.; Shen, G. Z. Wearable sensors-enabled human-machine interaction systems: From design to application. Adv. Funct. Mater. 2021, 31, 2008936.

    Article  CAS  Google Scholar 

  9. Fang, Y. S.; Zhao, X.; Tat, T.; Xiao, X.; Chen, G. R.; Xu, J.; Chen, J. All-in-one conformal epidermal patch for multimodal biosensing. Matter 2021, 4, 1102–1105.

    Article  CAS  Google Scholar 

  10. Xiao, X.; Yin, J. Y.; Chen, G. R.; Shen, S.; Nashalian, A.; Chen, J. Bioinspired acoustic textiles with nanoscale vibrations for wearable biomonitoring. Matter 2022, 5, 1342–1345.

    Article  CAS  Google Scholar 

  11. Meng, K. Y.; Xiao, X.; Wei, W. X.; Chen, G. R.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022, 34, 2109357.

    Article  CAS  Google Scholar 

  12. Chang, A.; Uy, C.; Xiao, X.; Xiao, X.; Chen, J. Self-powered environmental monitoring via a triboelectric nanogenerator. Nano Energy 2022, 98, 107282.

    Article  CAS  Google Scholar 

  13. Ji, X. Q.; Rao, Z.; Zhang, W.; Liu, C.; Wang, Z. M.; Zhang, S.; Zhang, B. T.; Hu, M. L.; Servati, P.; Xiao, X. Airline point-of-care system on seat belt for hybrid physiological signal monitoring. Micromachines 2022, 13, 1880.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Parandeh, S.; Etemadi, N.; Kharaziha, M.; Chen, G. R.; Nashalian, A.; Xiao, X.; Chen, J. Advances in triboelectric nanogenerators for self-powered regenerative medicine. Adv. Funct. Mater. 2021, 31, 2105169.

    Article  CAS  Google Scholar 

  15. Chen, G. R.; Fang, Y. S.; Zhao, X.; Tat, T.; Chen, J. Textiles for learning tactile interactions. Nat. Electron. 2021, 4, 175–176.

    Article  CAS  Google Scholar 

  16. Lin, Z. W.; Zhang, G. Q.; Xiao, X.; Au, C.; Zhou, Y. H.; Sun, C. C.; Zhou, Z. H.; Yan, R.; Fan, E. D.; Si, S. B. et al. A personalized acoustic interface for wearable human-machine interaction. Adv. Funct. Mater. 2022, 32, 2109430.

    Article  CAS  Google Scholar 

  17. Mencarini, E.; Rapp, A.; Tirabeni, L.; Zancanaro, M. Designing wearable systems for sports: A review of trends and opportunities in human-computer interaction. IEEE Trans. Hum. -Mach. Syst. 2019, 49, 314–325.

    Article  Google Scholar 

  18. Hu, H. J.; Huang, H.; Li, M. H.; Gao, X. X.; Yin, L.; Qi, R. X.; Wu, R. S.; Chen, X. J.; Ma, Y. X.; Shi, K. R. et al. A wearable cardiac ultrasound imager. Nature 2023, 613, 667–675.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rana, M.; Mittal, V. Wearable sensors for real-time kinematics analysis in sports: A review. IEEE Sens. J. 2021, 21, 1187–1207.

    Article  ADS  Google Scholar 

  20. Ermes, M.; Pärkkä, J.; Mäntyjärvi, J.; Korhonen, I. Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 20–26.

    Article  CAS  PubMed  Google Scholar 

  21. Luo, Y.; Wang, Z. H.; Wang, J. Y.; Xiao, X.; Li, Q.; Ding, W. B.; Fu, H. Y. Triboelectric bending sensor based smart glove towards intuitive multi-dimensional human-machine interfaces. Nano Energy 2021, 89, 106330.

    Article  CAS  Google Scholar 

  22. Xiao, X.; Xiao, X.; Lan, Y.; Chen, J. Learning from nature for healthcare, energy, and environment. Innovation 2021, 2, 100135.

    PubMed  PubMed Central  Google Scholar 

  23. Zan, G. T.; Wu, T.; Zhang, Z. L.; Li, J.; Zhou, J. C.; Zhu, F.; Chen, H. X.; Wen, M.; Yang, X. C.; Peng, X. J. et al. Bioinspired nanocomposites with self-adaptive stress dispersion for super-foldable electrodes. Adv. Sci. 2022, 9, 2103714.

    Article  CAS  Google Scholar 

  24. Meng, K. Y.; Xiao, X.; Liu, Z. X.; Shen, S.; Tat, T.; Wang, Z. H.; Lu, C. Y.; Ding, W. B.; He, X. M.; Yang, J. et al. Kirigami-inspired pressure sensors for wearable dynamic cardiovascular monitoring. Adv. Mater. 2022, 34, 2202478.

    Article  CAS  Google Scholar 

  25. Xiao, X.; Zhang, C. H.; Ma, H. Y.; Zhang, Y. H.; Liu, G. L.; Cao, M. Y.; Yu, C. M.; Jiang, L. Bioinspired slippery cone for controllable manipulation of gas bubbles in low-surface-tension environment. ACS Nano 2019, 13, 4083–4090.

    Article  CAS  PubMed  Google Scholar 

  26. Xiao, X.; Li, S. K.; Zhu, X. D.; Xiao, X.; Zhang, C. H.; Jiang, F. M.; Yu, C. M.; Jiang, L. Bioinspired two-dimensional structure with asymmetric wettability barriers for unidirectional and long-distance gas bubble delivery underwater. Nano Lett. 2021, 21, 2117–2123.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Zhang, C. H.; Zhang, B.; Ma, H. Y.; Li, Z.; Xiao, X.; Zhang, Y. H.; Cui, X. Y.; Yu, C. M.; Cao, M. Y.; Jiang, L. Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment. ACS Nano 2018, 12, 2048–2055.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, C. H.; Zhang, Y. H.; Xiao, X.; Liu, G. L.; Xu, Z.; Wang, B.; Yu, C. M.; Ras, R. H. A.; Jiang, L. Efficient separation of immiscible oil/water mixtures using a perforated lotus leaf. Green Chem. 2019, 21, 6579–6584.

    Article  CAS  Google Scholar 

  29. Dai, B. Y.; Zhou, Y. H.; Xiao, X.; Chen, Y. K.; Guo, J. H.; Gao, C. C.; Xie, Y. N.; Chen, J. Fluid field modulation in mass transfer for efficient photocatalysis. Adv. Sci. 2022, 9, 2203057.

    Article  CAS  Google Scholar 

  30. Liu, H. D.; Wang, C. Y.; Chen, G. R.; Liao, Y. T.; Mao, M. R.; Cheng, T.; Libanori, A.; Xiao, X.; Hu, X. J.; Liu, K. et al. Moisture assisted photo-engineered textiles for visible and self-adaptive infrared dual camouflage. Nano Energy 2022, 93, 106855.

    Article  CAS  Google Scholar 

  31. Lamichhaney, S.; Han, F.; Berglund, J.; Wang, C.; Almén, M. S.; Webster, M. T.; Grant, B. R.; Grant, P. R.; Andersson, L. A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science 2016, 352, 470–474.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Xue, J. T.; Zou, Y.; Deng, Y. L.; Li, Z. Bioinspired sensor system for health care and human-machine interaction. EcoMat 2022, 4, e12209.

    Article  CAS  Google Scholar 

  33. Muhammad, H. B.; Oddo, C. M.; Beccai, L.; Recchiuto, C.; Anthony, C. J.; Adams, M. J.; Carrozza, M. C.; Hukins, D. W. L.; Ward, M. C. L. Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger. Sens. Actuators A Phys. 2011, 165, 221–229.

    Article  CAS  Google Scholar 

  34. Cheng, Y. F.; Ma, Y. N.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y. et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 2020, 14, 2145–2155.

    Article  CAS  PubMed  Google Scholar 

  35. Li, W. J.; Pei, Y. T.; Zhang, C.; Kottapalli, A. G. P. Bioinspired designs and biomimetic applications of triboelectric nanogenerators. Nano Energy 2021, 84, 105865.

    Article  CAS  Google Scholar 

  36. Su, Y. J.; Wang, J. J.; Wang, B.; Yang, T. N.; Yang, B. X.; Xie, G. Z.; Zhou, Y. H.; Zhang, S. L.; Tai, H. L.; Cai, Z. X. et al. Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano 2020, 14, 6067–6075.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578.

    Article  Google Scholar 

  39. Zhao, X.; Askari, H.; Chen, J. Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule 2021, 5, 1391–1431.

    Article  Google Scholar 

  40. Deng, W. L.; Zhou, Y. H.; Libanori, A.; Chen, G. R.; Yang, W. Q.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, G. R.; Zhao, X.; Andalib, S.; Xu, J.; Zhou, Y. H.; Tat, T.; Lin, K.; Chen, J. Discovering giant magnetoelasticity in soft matter for electronic textiles. Matter 2021, 4, 3725–3740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao, X.; Zhou, Y. H.; Xu, J.; Chen, G. R.; Fang, Y. S.; Tat, T.; Xiao, X.; Song, Y.; Li, S.; Chen, J. Soft fibers with magnetoelasticity for wearable electronics. Nat. Commun. 2021, 12, 6755.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, G. R.; Zhou, Y. H.; Fang, Y. S.; Zhao, X.; Shen, S.; Tat, T.; Nashalian, A.; Chen, J. Wearable ultrahigh current power source based on giant magnetoelastic effect in soft elastomer system. ACS Nano 2021, 15, 20582–20589.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, X.; Chen, G. R.; Zhou, Y. H.; Nashalian, A.; Xu, J.; Tat, T.; Song, Y.; Libanori, A.; Xu, S. L.; Li, S. et al. Giant magnetoelastic effect enabled stretchable sensor for self-powered biomonitoring. ACS Nano 2022, 16, 6013–6022.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, Y. H.; Zhao, X.; Xu, J.; Fang, Y. S.; Chen, G. R.; Song, Y.; Li, S.; Chen, J. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 2021, 20, 1670–1676.

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Xu, J.; Tat, T.; Zhao, X.; Zhou, Y. H.; Ngo, D.; Xiao, X.; Chen, J. A programmable magnetoelastic sensor array for self-powered human-machine interface. Appl. Phys. Rev. 2022, 9, 031404.

    Article  ADS  CAS  Google Scholar 

  47. Xu, J.; Tat, T.; Zhao, X.; Xiao, X.; Zhou, Y. H.; Yin, J. Y.; Chen, K. R.; Chen, J. Spherical magnetoelastic generator for multidirectional vibration energy harvesting. ACS Nano 2023, 17, 3865–3872.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao, X.; Nashalian, A.; Ock, I. W.; Popoli, S.; Xu, J.; Yin, J. Y.; Tat, T.; Libanori, A.; Chen, G. R.; Zhou, Y. H. et al. A soft magnetoelastic generator for wind-energy harvesting. Adv. Mater. 2022, 34, 2204238.

    Article  CAS  Google Scholar 

  49. Zhou, Z. H.; Padgett, S.; Cai, Z. X.; Conta, G.; Wu, Y. F.; He, Q.; Zhang, S. L.; Sun, C. C.; Liu, J.; Fan, E. D. et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens. Bioelectron. 2020, 155, 112064.

    Article  CAS  PubMed  Google Scholar 

  50. Lee, W.; Yun, H.; Song, J. K.; Sunwoo, S. H.; Kim, D. H. Nanoscale materials and deformable device designs for bioinspired and biointegrated electronics. Acc. Mater. Res. 2021, 2, 266–281.

    Article  CAS  Google Scholar 

  51. Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J. S.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839–6846.

    Article  CAS  PubMed  Google Scholar 

  52. Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143–153.

    Article  ADS  Google Scholar 

  53. Yin, J. Y.; Zhao, Q.; Shen, Y. X.; He, B. P(LLA-co-PDO) copolymers with random and block architectures:Synthesis and characterizations. J. Appl. Polym. Sci. 2022, 139, e52410.

    Article  CAS  Google Scholar 

  54. Zhang, C. H.; Xiao, X.; Zhang, Y. H.; Liu, Z. X.; Xiao, X.; Nashalian, A.; Wang, X. S.; Cao, M. Y.; He, X. M.; Chen, J. et al. Bioinspired anisotropic slippery cilia for stiffness-controllable bubble transport. ACS Nano 2022, 16, 9348–9358.

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Q. P.; He, S. H.; Bowen, C. R.; Xiao, X.; Oh, J. A. S.; Sun, J. G.; Zeng, K. Y.; Lei, W.; Chen, J. Porous pyroelectric ceramic with carbon nanotubes for high-performance thermal to electrical energy conversion. Nano Energy 2022, 102, 107703.

    Article  CAS  Google Scholar 

  56. Zhang, Z. J.; Xiao, X.; Zhou, Y. H.; Huang, L. J.; Wang, Y. X.; Rong, Q. L.; Han, Z. Y.; Qu, H. J.; Zhu, Z. J.; Xu, M. S. et al. Bioinspired graphene oxide membranes with pH-responsive nanochannels for high-performance nanofiltration. ACS Nano 2021, 15, 13178–13187.

    Article  CAS  PubMed  Google Scholar 

  57. Fang, Y. S.; Chen, G. R.; Bick, M.; Chen, J. Smart textiles for personalized thermoregulation. Chem. Soc. Rev. 2021, 50, 9357–9374.

    Article  CAS  PubMed  Google Scholar 

  58. Lv, J. W.; Liu, Y. S.; Qin, Y. T.; Yin, Q.; Chen, S. Y.; Cheng, Z.; Yin, J. Y.; Dai, Y.; Liu, Y.; Liu, X. Y. Constructing “Rigid-and-Soft” interlocking stereoscopic interphase structure of aramid fiber composites with high interfacial shear strength and toughness. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106386.

    Article  CAS  Google Scholar 

  59. Lv, J. W.; Yin, J. Y.; Qin, Y. T.; Dai, Y.; Cheng, Z.; Luo, L. B.; Liu, X. Y. Post-construction of weaving structure in aramid fiber towards improvements of its transverse properties. Compos. Sci. Technol. 2021, 208, 108780.

    Article  CAS  Google Scholar 

  60. Puers, R. Capacitive sensors: When and how to use them. Sens. Actuators A Phys. 1993, 37–38, 93–105.

    Article  Google Scholar 

  61. Hu, X. H.; Yang, W. Q. Planar capacitive sensors-designs and applications. Sens. Rev. 2010, 30, 24–39.

    Article  CAS  Google Scholar 

  62. Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321.

    Article  Google Scholar 

  63. Shen, X. Q.; Li, M. D.; Ma, J. P.; Shen, Q. D. Skin-inspired pressure sensor with MXene/P(VDF-TrFE-CFE) as active layer for wearable electronics. Nanomaterials 2021, 11, 716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gao, G. R.; Yang, F. J.; Zhou, F. H.; He, J.; Lu, W.; Xiao, P.; Yan, H. Z.; Pan, C. F.; Chen, T.; Wang, Z. L. Bioinspired self-healing human-machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates. Adv. Mater. 2020, 32, 2004290.

    Article  CAS  Google Scholar 

  65. Fiorillo, A. S.; Critello, C. D.; Pullano, S. A. Theory, technology and applications of piezoresistive sensors: A review. Sens. Actuators A Phys. 2018, 281, 156–175.

    Article  CAS  Google Scholar 

  66. Duan, L. Y.; D’hooge, D. R.; Cardon, L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Prog. Mater. Sci. 2020, 114, 100617.

    Article  Google Scholar 

  67. Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Guo, Y.; Guo, Z. Y.; Zhong, M. J.; Wan, P. B.; Zhang, W. X.; Zhang, L. Q. A flexible wearable pressure sensor with bioinspired microcrack and interlocking for full-range human-machine interfacing. Small 2018, 14, 1803018.

    Article  Google Scholar 

  69. Wei, Q. K.; Chen, G. R.; Pan, H.; Ye, Z. B.; Au, C.; Chen, C. X.; Zhao, X.; Zhou, Y. H.; Xiao, X.; Tai, H. L. et al. MXene-sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time tactile sensing. Small Methods 2022, 6, 2101051.

    Article  CAS  Google Scholar 

  70. Qiu, Y.; Tian, Y.; Sun, S. S.; Hu, J. H.; Wang, Y. Y.; Zhang, Z.; Liu, A. P.; Cheng, H. Y.; Gao, W. Z.; Zhang, W. et al. Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions. Nano Energy 2020, 78, 105337.

    Article  CAS  Google Scholar 

  71. Shen, J. H.; Guo, Y. X.; Zuo, S. H.; Shi, F. W.; Jiang, J. C.; Chu, J. H. A bioinspired porous-designed hydrogel@polyurethane sponge piezoresistive sensor for human-machine interfacing. Nanoscale 2021, 13, 19155–19164.

    Article  CAS  PubMed  Google Scholar 

  72. Cao, W.; Luo, Y.; Dai, Y. M.; Wang, X.; Wu, K. L.; Lin, H. J.; Rui, K.; Zhu, J. X. Piezoresistive pressure sensor based on a conductive 3D sponge network for motion sensing and human-machine interface. ACS Appl. Mater. Interfaces 2023, 15, 3131–3140.

    Article  CAS  PubMed  Google Scholar 

  73. Sun, Y.; Shen, S.; Deng, W. L.; Tian, G.; Xiong, D.; Zhang, H. R.; Yang, T.; Wang, S. L.; Chen, J.; Yang, W. Q. Suppressing piezoelectric screening effect at atomic scale for enhanced piezoelectricity. Nano Energy 2023, 105, 108024.

    Article  CAS  Google Scholar 

  74. Su, Y. J.; Li, W. X.; Cheng, X. X.; Zhou, Y. H.; Yang, S.; Zhang, X.; Chen, C. X.; Yang, T. N.; Pan, H.; Xie, G. Z. et al. High-performance piezoelectric composites via β phase programming. Nat. Commun. 2022, 13, 4867.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lan, B. L.; Xiao, X.; Di Carlo, A.; Deng, W. L.; Yang, T.; Jin, L.; Tian, G.; Ao, Y.; Yang, W. Q.; Chen, J. Topological nanofibers enhanced piezoelectric membranes for soft bioelectronics. Adv. Funct. Mater. 2022, 32, 2207393.

    Article  CAS  Google Scholar 

  76. Su, Y. J.; Li, W. X.; Yuan, L.; Chen, C. X.; Pan, H.; Xie, G. Z.; Conta, G.; Ferrier, S.; Zhao, X.; Chen, G. R. et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 2021, 89, 106321.

    Article  CAS  Google Scholar 

  77. Tadigadapa, S.; Mateti, K. Piezoelectric MEMS sensors: State-of-the-art and perspectives. Meas. Sci. Technol. 2009, 20, 092001.

    Article  ADS  Google Scholar 

  78. De Rossi, D.; Carpi, F.; Scilingo, E. P. Polymer based interfaces as bioinspired ‘smart skins’. Adv. Colloid Interface Sci. 2005, 116, 165–178.

    Article  CAS  PubMed  Google Scholar 

  79. Hwang, W. S.; Park, H. C. Finite element modeling of piezoelectric sensors and actuators. AIAA J. 1993, 31, 930–937.

    Article  ADS  CAS  Google Scholar 

  80. Viola, G.; Chang, J. K.; Maltby, T.; Steckler, F.; Jomaa, M.; Sun, J. F.; Edusei, J.; Zhang, D.; Vilches, A.; Gao, S. et al. Bioinspired multiresonant acoustic devices based on electrospun piezoelectric polymeric nanofibers. ACS Appl. Mater. Interfaces 2020, 12, 34643–34657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, X. X.; Song, W. Z.; You, M. H.; Zhang, J.; Yu, M.; Fan, Z. Y.; Ramakrishna, S.; Long, Y. Z. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano 2018, 12, 8588–8596.

    Article  CAS  PubMed  Google Scholar 

  82. Chun, K. Y.; Son, Y. J.; Jeon, E. S.; Lee, S.; Han, C. S. A self-powered sensor mimicking slow- and fast-adapting cutaneous mechanoreceptors. Adv. Mater. 2018, 30, 1706299.

    Article  Google Scholar 

  83. Kim, D. W.; Kim, H.; Hwang, G. T.; Cho, S. B.; Jeon, S. H.; Kim, H. W.; Jeong, C. K.; Chun, S.; Pang, C. Conformably skin-adherent piezoelectric patch with bioinspired hierarchically arrayed microsuckers enables physical energy amplification. ACS Energy Lett. 2022, 7, 1820–1827.

    Article  CAS  Google Scholar 

  84. Zhao, Y. S.; Lo, C. Y.; Ruan, L. C.; Pi, C. H.; Kim, C.; Alsaid, Y.; Frenkel, I.; Rico, R.; Tsao, T. C.; He, X. M. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel. Sci. Robot. 2021, 6, eabd5483.

    Article  PubMed  Google Scholar 

  85. Lin, B.; Giurgiutiu, V.; Pollock, P.; Xu, B. L.; Doane, J. Durability and survivability of piezoelectric wafer active sensors on metallic structure. AIAA J. 2010, 48, 635–643.

    Article  ADS  CAS  Google Scholar 

  86. Sedlak, P.; Majzner, J.; Sikula, J. Mathematical model for electrical noise of piezoelectric sensor. AIP Conf. Proc. 2007, 922, 335–338.

    Article  ADS  CAS  Google Scholar 

  87. Rathod, V. T. A review of electric impedance matching techniques for piezoelectric sensors, actuators and transducers. Electronics 2019, 8, 169.

    Article  Google Scholar 

  88. Su, Y. J.; Chen, C. X.; Pan, H.; Yang, Y.; Chen, G. R.; Zhao, X.; Li, W. X.; Gong, Q. C.; Xie, G. Z.; Zhou, Y. H. et al. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv. Funct. Mater. 2021, 31, 2010962.

    Article  CAS  Google Scholar 

  89. Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.

    Article  CAS  Google Scholar 

  90. Zhang, N. N.; Tao, C. Y.; Fan, X.; Chen, J. Progress in triboelectric nanogenerators as self-powered smart sensors. J. Mater. Res. 2017, 32, 1628–1646.

    Article  ADS  Google Scholar 

  91. Jin, L.; Chen, J.; Zhang, B. B.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Huang, X.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Self-powered safety helmet based on hybridized nanogenerator for emergency. ACS Nano 2016, 10, 7874–7881.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Rotating-disk-based hybridized electromagnetic–triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 2016, 10, 6241–6247.

    Article  CAS  PubMed  Google Scholar 

  93. Elsanadidy, E.; Mosa, I. M.; Luo, D.; Xiao, X.; Chen, J.; Wang, Z. L.; Rusling, J. F. Advances in triboelectric nanogenerators for self-powered neuromodulation. Adv. Funct. Mater. 2023, 33, 2211177.

    Article  CAS  Google Scholar 

  94. Peng, Z. H.; Shi, J. H.; Xiao, X.; Hong, Y.; Li, X. M.; Zhang, W. W.; Cheng, Y. L.; Wang, Z. K.; Li, W. J.; Chen, J. et al. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration. Nat. Commun. 2022, 13, 7835.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xiao, X.; Chen, G. B.; Libanori, A.; Chen, J. Wearable triboelectric nanogenerators for therapeutics. Trends Chem. 2021, 3, 279–290.

    Article  CAS  Google Scholar 

  96. Shen, S.; Xiao, X.; Xiao, X.; Chen, J. Wearable triboelectric nanogenerators for heart rate monitoring. Chem. Commun. 2021, 57, 5871–5879.

    Article  CAS  Google Scholar 

  97. Chen, J.; Zhu, G.; Yang, J.; Jing, Q. S.; Bai, P.; Yang, W. Q.; Qi, X. W.; Su, Y. J.; Wang, Z. L. Personalized keystroke dynamics for self-powered human-machine interfacing. ACS Nano 2015, 9, 105–116.

    Article  PubMed  Google Scholar 

  98. Yang, J.; Chen, J.; Su, Y. J.; Jing, Q. S.; Li, Z. L.; Yi, F.; Wen, X. N.; Wang, Z. N.; Wang, Z. L. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 2015, 27, 1316–1326.

    Article  CAS  PubMed  Google Scholar 

  99. Liu, B. H.; Libanori, A.; Zhou, Y. H.; Xiao, X.; Xie, G. Z.; Zhao, X.; Su, Y. J.; Wang, S.; Yuan, Z.; Duan, Z. H. et al. Simultaneous biomechanical and biochemical monitoring for self-powered breath analysis. ACS Appl. Mater. Interfaces 2022, 14, 7301–7310.

    Article  CAS  PubMed  Google Scholar 

  100. Shen, S.; Xiao, X.; Xiao, X.; Chen, J. Triboelectric nanogenerators for self-powered breath monitoring. ACS Appl. Energy Mater. 2022, 5, 3952–3965.

    Article  CAS  Google Scholar 

  101. Zhou, Z. H.; Weng, L.; Tat, T.; Libanori, A.; Lin, Z. M.; Ge, L. J.; Yang, J.; Chen, J. Smart insole for robust wearable biomechanical energy harvesting in harsh environments. ACS Nano 2020, 14, 14126–14133.

    Article  CAS  PubMed  Google Scholar 

  102. Zou, Y. J.; Libanori, A.; Xu, J.; Nashalian, A.; Chen, J. Triboelectric nanogenerator enabled smart shoes for wearable electricity generation. Research 2020, 2020, 7158953.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2021, 171, 112714.

    Article  CAS  PubMed  Google Scholar 

  104. Su, Y. J.; Chen, G. R.; Chen, C. X.; Gong, Q. C.; Xie, G. Z.; Yao, M. L.; Tai, H. L.; Jiang, Y. D.; Chen, J. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 2021, 33, 2101262.

    Article  CAS  Google Scholar 

  105. Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

    Article  ADS  CAS  Google Scholar 

  106. Peng, Z. H.; Xiao, X.; Song, J. X.; Libanori, A.; Lee, C.; Chen, K. D.; Gao, Y.; Fang, Y. S.; Wang, J.; Wang, Z. K. et al. Improving relative permittivity and suppressing dielectric loss of triboelectric layers for high-performance wearable electricity generation. ACS Nano 2022, 16, 20251–20262.

    Article  CAS  PubMed  Google Scholar 

  107. Alagumalai, A.; Mahian, O.; Vimal, K. E. K.; Yang, L.; Xiao, X.; Saeidi, S.; Zhang, P.; Saboori, T.; Wongwises, S.; Wang, Z. L. et al. A contextual framework development toward triboelectric nanogenerator commercialization. Nano Energy 2022, 101, 107572.

    Article  CAS  Google Scholar 

  108. Jin, L.; Xiao, X.; Deng, W. L.; Nashalian, A.; He, D. R.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. et al. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404–6411.

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Huang, C. X.; Chen, G. R.; Nashalian, A.; Chen, J. Advances in self-powered chemical sensing via a triboelectric nanogenerator. Nanoscale 2021, 13, 2065–2081.

    Article  CAS  PubMed  Google Scholar 

  110. Yao, G.; Xu, L.; Cheng, X. W.; Li, Y. Y.; Huang, X.; Guo, W.; Liu, S. Y.; Wang, Z. L.; Wu, H. Bioinspired triboelectric nanogenerators as self-powered electronic skin for robotic tactile sensing. Adv. Funct. Mater. 2020, 30, 1907312.

    Article  CAS  Google Scholar 

  111. Jiang, Y.; Dong, K.; Li, X.; An, J.; Wu, D. Q.; Peng, X.; Yi, J.; Ning, C.; Cheng, R. W.; Yu, P. T. et al. Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors. Adv. Funct. Mater. 2021, 31, 2005584.

    Article  CAS  Google Scholar 

  112. Maharjan, P.; Bhatta, T.; Salauddin, M.; Rasel, M. S.; Rahman, M. T.; Rana, S. M. S.; Park, J. Y. A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation. Nano Energy 2020, 76, 105071.

    Article  CAS  Google Scholar 

  113. Zhou, H.; Li, D. X.; He, X. M.; Hui, X. D.; Guo, H. Y.; Hu, C. G.; Mu, X. J.; Wang, Z. L. Bionic ultra-sensitive self-powered electromechanical sensor for muscle-triggered communication application. Adv. Sci. 2021, 8, 2101020.

    Article  Google Scholar 

  114. Xu, Q. H.; Fang, Y. S.; Jing, Q. S.; Hu, N.; Lin, K.; Pan, Y. F.; Xu, L.; Gao, H. Q.; Yuan, M.; Chu, L. et al. A portable triboelectric spirometer for wireless pulmonary function monitoring. Biosens. Bioelectron. 2021, 187, 113329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Peng, Z. H.; Song, J.; Gao, Y.; Liu, J.; Lee, C.; Chen, G. R.; Wang, Z. K.; Chen, J.; Leung, M. K. H. A fluorinated polymer sponge with superhydrophobicity for high-performance biomechanical energy harvesting. Nano Energy 2021, 85, 106021.

    Article  CAS  Google Scholar 

  116. Zou, Y. J.; Xu, J.; Fang, Y. S.; Zhao, X.; Zhou, Y. H.; Chen, J. A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics. Nano Energy 2021, 83, 105845.

    Article  CAS  Google Scholar 

  117. Xu, J.; Zou, Y. J.; Nashalian, A.; Chen, J. Leverage surface chemistry for high-performance triboelectric nanogenerators. Front. Chem. 2020, 8, 577327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhou, Y. H.; Deng, W. L.; Xu, J.; Chen, J. Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep. Phys. Sci. 2020, 1, 100142.

    Article  CAS  Google Scholar 

  119. Zi, Y. L.; Basset, P.; Chen, J. Triboelectric nanogenerator—Progress and perspectives. EcoMat 2021, 3, e12129.

    Article  Google Scholar 

  120. Conta, G.; Libanori, A.; Tat, T.; Chen, G. R.; Chen, J. Triboelectric nanogenerators for therapeutic electrical stimulation. Adv. Mater. 2021, 33, 2007502.

    Article  CAS  Google Scholar 

  121. Li, X. Y.; Tat, T.; Chen, J. Triboelectric nanogenerators for self-powered drug delivery. Trends Chem. 2021, 3, 765–778.

    Article  CAS  Google Scholar 

  122. Zou, Y. J.; Xu, J.; Chen, K.; Chen, J. Advances in nanostructures for high-performance triboelectric nanogenerators. Adv. Mater. Technol. 2021, 6, 2000916.

    Article  CAS  Google Scholar 

  123. Libanori, A.; Soto, J.; Xu, J.; Song, Y.; Zarubova, J.; Tat, T.; Xiao, X.; Yue, S. Z.; Jonas, S. J.; Li, S. et al. Self-powered programming of fibroblasts into neurons via a scalable magnetoelastic generator array. Adv. Mater. 2023, 35, 2206933.

    Article  CAS  Google Scholar 

  124. Yin, J.; Wang, S.; Carlo, A. D.; Chang, A.; Wan, X.; Xu, J.; Xiao, X.; Chen, J. Smart textiles for self-powered biomonitoring. Med-X 2023, 1, 3.

    Article  Google Scholar 

  125. Ock, I. W.; Zhao, X.; Tat, T.; Xu, J.; Chen, J. Harvesting hydropower via a magnetoelastic generator for sustainable water splitting. ACS Nano 2022, 16, 16816–16823.

    Article  CAS  PubMed  Google Scholar 

  126. Ock, I. W.; Zhao, X.; Wan, X.; Zhou, Y. H.; Chen, G. R.; Chen, J. Boost the voltage of a magnetoelastic generator via tuning the magnetic induction layer resistance. Nano Energy 2023, 109, 108298.

    Article  CAS  Google Scholar 

  127. Xu, J.; Tat, T.; Yin, J.; Ngo, D.; Zhao, X.; Wan, X.; Che, Z.; Chen, K.; Harris, L.; Chen, J. A textile magnetoelastic patch for self-powered personalized muscle physiotherapy. Matter 2023, 6, 1–13.

    Article  CAS  Google Scholar 

  128. Chen, G. R.; Xiao, X.; Zhao, X.; Tat, T.; Bick, M.; Chen, J. Electronic textiles for wearable point-of-care systems. Chem. Rev. 2022, 122, 3259–3291.

    Article  CAS  PubMed  Google Scholar 

  129. Che, Z. Y.; O’Donovan, S.; Xiao, X.; Wan, X.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Yin, J. Y.; Chen, J. Implantable triboelectric nanogenerators for self-powered cardiovascular healthcare. Small 2023, 19, 2207600.

    Article  CAS  Google Scholar 

  130. Abiri, P.; Luo, Y.; Huang, Z. Y.; Cui, Q. Y.; Duarte-Vogel, S.; Roustaei, M.; Chang, C. C.; Xiao, X.; Packard, R.; Cavallero, S. et al. 3-Dimensional electrical impedance spectroscopy for in situ endoluminal mapping of metabolically active plaques. Sens. Actuators B Chem 2022, 354, 131152.

    Article  CAS  Google Scholar 

  131. Xiao, X.; Xiao, X.; Nashalian, A.; Libanori, A.; Fang, Y. S.; Li, X. Y.; Chen, J. Triboelectric nanogenerators for self-powered wound healing. Adv. Healthc. Mater. 2021, 10, 2100975.

    Article  CAS  Google Scholar 

  132. Yang, M.; Au, C.; Deng, G. W.; Mathur, S.; Huang, Q. P.; Luo, X. L.; Xie, G. Z.; Tai, H. L.; Jiang, Y. D.; Chen, C. X. et al. NiWO4 microflowers on multi-walled carbon nanotubes for high-performance NH3 detection. ACS Appl. Mater. Interfaces 2021, 13, 52850–52860.

    Article  CAS  PubMed  Google Scholar 

  133. Li, J. H.; Jiao, L.; Xiao, X.; Nashalian, A.; Mathur, S.; Zhu, Z. J.; Wu, W. T.; Guo, W. W.; Zhai, Y. L.; Lu, X. Q. et al. Flexible Prussian blue-Au fibers as robust peroxidase-like nanozymes for wearable hydrogen peroxide and uric acid monitoring. Electroanalysis 2022, 34, 1763–1771.

    Article  CAS  Google Scholar 

  134. Zhai, Y. L.; Li, J. H.; Shen, S.; Zhu, Z. J.; Mao, S.; Xiao, X.; Zhu, C. Z.; Tang, J. G.; Lu, X. Q.; Chen, J. Recent advances on dual-band electrochromic materials and devices. Adv. Funct. Mater. 2022, 32, 2109848.

    Article  CAS  Google Scholar 

  135. Bakker, E.; Telting-Diaz, M. Electrochemical sensors. Anal. Chem. 2002, 74, 2781–2800.

    Article  CAS  PubMed  Google Scholar 

  136. Stetter, J. R.; Penrose, W. R.; Yao, S. Sensors, chemical sensors, electrochemical sensors, and ECS. J. Electrochem. Soc. 2003, 150, S11–S16.

    Article  CAS  Google Scholar 

  137. Xu, J.; Fang, Y. S.; Chen, J. Wearable biosensors for non-invasive sweat diagnostics. Biosensors 2021, 11, 245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kashyap, V.; Arora, B. B.; Bhattacharjee, S. A computational study of branch-wise curvature in idealized coronary artery bifurcations. Appl. Eng. Sci. 2020, 4, 100027.

    Google Scholar 

  140. Kimmel, D. W.; LeBlanc, G.; Meschievitz, M. E.; Cliffel, D. E. Electrochemical sensors and biosensors. Anal. Chem. 2012, 84, 685–707.

    Article  CAS  PubMed  Google Scholar 

  141. Hu, Y.; Qi, K.; Chang, L. F.; Liu, J. Q.; Yang, L. L.; Huang, M. J.; Wu, G.; Lu, P.; Chen, W.; Wu, Y. C. A bioinspired multi-functional wearable sensor with an integrated light-induced actuator based on an asymmetric graphene composite film. J. Mater. Chem. C 2019, 7, 6879–6888.

    Article  CAS  Google Scholar 

  142. Drotlef, D. M.; Amjadi, M.; Yunusa, M.; Sitti, M. Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 2017, 29, 1701353.

    Article  Google Scholar 

  143. He, X. C.; Yang, S. J.; Pei, Q. B.; Song, Y. C.; Liu, C. H.; Xu, T. L.; Zhang, X. J. Integrated smart Janus textile bands for self-pumping sweat sampling and analysis. ACS Sens. 2020, 5, 1548–1554.

    Article  CAS  PubMed  Google Scholar 

  144. Shin, S. H.; Bae, Y. E.; Moon, H. K.; Kim, J.; Choi, S. H.; Kim, Y.; Yoon, H. J.; Lee, M. H.; Nah, J. Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting. ACS Nano 2017, 11, 6131–6138.

    Article  CAS  PubMed  Google Scholar 

  145. Zhou, Y. K.; Shen, M. L.; Cui, X.; Shao, Y. C.; Li, L. J.; Zhang, Y. Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 2021, 84, 105887.

    Article  CAS  Google Scholar 

  146. Ji, X. L.; Zhao, T. K.; Zhao, X.; Lu, X. F.; Li, T. H. Triboelectric nanogenerator based smart electronics via machine learning. Adv. Mater. Technol. 2020, 5, 1900921.

    Article  CAS  Google Scholar 

  147. Xu, J. H.; Cai, H. W.; Wu, Z. H.; Li, X.; Tian, C. H.; Ao, Z.; Niu, V. C.; Xiao, X.; Jiang, L.; Khodoun, M. et al. Acoustic metamaterials-driven transdermal drug delivery for rapid and on-demand management of acute disease. Nat. Commun. 2023, 14, 869.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  148. Weston, M. Wearable surveillance-a step too far. Strategic HR Rev. 2015, 14, 214–219.

    Article  Google Scholar 

  149. Mahmud, M. A. P.; Tat, T.; Xiao, X.; Adhikary, P.; Chen, J. Advances in 4D-printed physiological monitoring sensors. Exploration 2021, 1, 20210033.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Li, X. B.; Xiao, X.; Bai, C. H.; Mayer, M.; Cui, X. J.; Lin, K.; Li, Y. H.; Zhang, H. L.; Chen, J. Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments. J. Mater. Chem. C 2022, 10, 13789–13796.

    Article  CAS  Google Scholar 

  151. Deng, W. L.; Libanori, A.; Xiao, X.; Fang, J.; Zhao, X.; Zhou, Y. H.; Chen, G. R.; Li, S.; Chen, J. Computational investigation of ultrasound induced electricity generation via a triboelectric nanogenerator. Nano Energy 2022, 91, 106656.

    Article  CAS  Google Scholar 

  152. Xiao, X.; Yin, J. Y.; Shen, S.; Che, Z. Y.; Wan, X.; Wang, S. L.; Chen, J. Advances in solid-state fiber batteries for wearable bioelectronics. Curr. Opin. Solid State Mater. Sci. 2222, 66, 101042.

    Google Scholar 

  153. Chu, X.; Zhao, X.; Zhou, Y. H.; Wang, Y. H.; Han, X. L.; Zhou, Y. L.; Ma, J. X.; Wang, Z. X.; Huang, H. C.; Xu, Z. et al. An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage. Nano Energy 2020, 76, 105179.

    Article  CAS  Google Scholar 

  154. Zhang, N. N.; Huang, F.; Zhao, S. L.; Lv, X. H.; Zhou, Y. H.; Xiang, S. W.; Xu, S. M.; Li, Y. Z.; Chen, G. R.; Tao, C. Y. et al. Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2020, 2, 1260–1269.

    Article  Google Scholar 

  155. Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705–711.

    Article  ADS  CAS  PubMed  Google Scholar 

  156. Chu, X.; Chen, G. R.; Xiao, X.; Wang, Z. X.; Yang, T.; Xu, Z.; Huang, H. C.; Wang, Y. H.; Yan, C.; Chen, N. J. et al. Air-stable conductive polymer ink for printed wearable micro-supercapacitors. Small 2021, 17, 2100956.

    Article  CAS  Google Scholar 

  157. Xiao, X.; Xiao, X.; Zhou, Y. H.; Zhao, X.; Chen, G. R.; Liu, Z. X.; Wang, Z. H.; Lu, C. Y.; Hu, M. L.; Nashalian, A. et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 2021, 7, eabl3742.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shen, S.; Xiao, X.; Yin, J. Y.; Xiao, X.; Chen, J. Self-powered smart gloves based on triboelectric nanogenerators. Small Methods 2022, 6, 2200830.

    Article  Google Scholar 

  159. Guo, R.; Fang, Y. S.; Wang, Z. S.; Libanori, A.; Xiao, X.; Wan, D.; Cui, X. J.; Sang, S. B.; Zhang, W. D.; Zhang, H. L. et al. Deep learning assisted body area triboelectric hydrogel sensor network for infant care. Adv. Funct. Mater. 2022, 32, 2204803.

    Article  CAS  Google Scholar 

  160. Luo, Y.; Xiao, X.; Chen, J.; Li, Q.; Fu, H. Y. Machine-learning-assisted recognition on bioinspired soft sensor arrays. ACS Nano 2022, 16, 6734–6743.

    Article  CAS  PubMed  Google Scholar 

  161. Fang, Y. S.; Xu, J.; Xiao, X.; Zou, Y. J.; Zhao, X.; Zhou, Y. H.; Chen, J. A deep-learning-assisted on-mask sensor network for adaptive respiratory monitoring. Adv. Mater. 2022, 34, 2200252.

    Article  CAS  Google Scholar 

  162. Xiao, X.; Fang, Y. S.; Xiao, X.; Xu, J.; Chen, J. Machine-learning-aided self-powered assistive physical therapy devices. ACS Nano 2021, 15, 18633–18646.

    Article  CAS  PubMed  Google Scholar 

  163. Fang, Y. S.; Zou, Y. J.; Xu, J.; Chen, G. R.; Zhou, Y. H.; Deng, W. L.; Zhao, X.; Roustaei, M.; Hsiai, T. K.; Chen, J. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 2021, 33, 2104178.

    Article  CAS  Google Scholar 

  164. Zhang, S. L.; Bick, M.; Xiao, X.; Chen, G. R.; Nashalian, A.; Chen, J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887.

    Article  CAS  Google Scholar 

  165. Libanori, A.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156.

    Article  CAS  Google Scholar 

  166. Ma, H. D.; Qin, H. Y.; Xiao, X.; Liu, N.; Wang, S. L.; Li, J. Y.; Shen, S.; Dai, S. Q.; Sun, M. M.; Li, P. Y. et al. Robust hydrogel sensors for unsupervised learning enabled sign-to-verbal translation. InfoMat 2023, 5, e12419.

    Article  CAS  Google Scholar 

  167. Wang, M; Yang, Y; Min, J; Song, Y; Tu, J; Mukasa, D; Gao, W. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat Biomed. Eng. 2022, 6, 1225–1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chiu, C. M; Chen, S. W; Pao, Y. P; Huang, M. Z; Chan, S. W; Lin, Z. H. A smart glove with integrated triboelectric nanogenerator for self-powered gesture recognition and language expression. Sci Tech Adv Mater 2019, 20, 964–971.

    Article  Google Scholar 

  169. Li, Y.; Yin, J. Y.; Liu, S. Y.; Xue, B.; Shokoohi, C.; Ge, G.; Hu, M. L.; Li, T. H.; Tao, X.; Rao, Z.; Meng, F. Y.; Shi, H. F.; Ji, X. Q.; Servati, P.; Xiao, X.; Chen, J. Learning hand kinematics for parkinson’s disease assessment using a multimodal sensor glove. Adv. Sci. 2023, 10, 2206982.

    Article  Google Scholar 

  170. Moin, A.; Zhou, A.; Rahimi, A.; Menon, A.; Benatti, S.; Alexandrov, G.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y.; Burghardt, F.; Benini, L.; Arias, A. C.; Rabaey, J. M. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 2021, 4, 54–63.

    Article  Google Scholar 

  171. Kim, K. K.; Kim, M.; Pyun, K.; Kim, J.; Min, J.; Koh, S.; Root, S. E.; Kim, J.; Nguyen, B.-N. T.; Nishio, Y.; Han, S.; Choi, J.; Kim, C.-Y.; Tok, J. B.-H.; Jo, S.; Ko, S. H.; Bao, Z. A Substrate-Less Nanomesh Receptor with Meta-Learning for Rapid Hand Task Recognition. Nat. Electron. 2023, 6, 64–75.

    Google Scholar 

  172. Araromi, O. A.; Graule, M. A.; Dorsey, K. L.; Castellanos, S.; Foster, J. R.; Hsu, W.-H.; Passy, A. E.; Vlassak, J. J.; Weaver, J. C.; Walsh, C. J.; Wood, R. J. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 2020, 587, 219–224.

    Article  ADS  CAS  PubMed  Google Scholar 

  173. Wang, M.; Yan, Z.; Wang, T.; Cai, P. Q.; Gao, S. Y.; Zeng, Y.; Wan, C. J.; Wang, H.; Pan, L.; Yu, J. C.; Pan, S. W.; He, K.; Lu, J.; Chen, X. D. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 2020, 3, 563–570.

    Article  Google Scholar 

  174. Luo, Y. Y.; Li, Y. Z.; Sharma, P.; Shou, W.; Wu, K.; Foshey, M.; Li, B. C.; Palacios, T.; Torralba, A.; Matusik, W. Learning human-environment interactions using conformal tactile textiles. Nat. Electron. 2021, 4, 193–201.

    Article  Google Scholar 

  175. Sundaram, S.; Kellnhofer, P.; Li, Y. Z.; Zhu, J.-Y.; Torralba, A.; Matusik, W. Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019, 569, 698–702.

    Article  ADS  CAS  PubMed  Google Scholar 

  176. Yu, Y.; Li, J. H.; Solomon, S. A.; Min, J. H.; Tu, J. B.; Guo, W.; Xu, C. H.; Song, Y.; Gao, W. Printed soft human-machine interface for robotic physicochemical sensing. Sci Robotics 2022, 7, eabn0495.

    Article  Google Scholar 

  177. Xiao, X.; Yin, J. Y.; Chen, J. Triboelectric nanogenerator for healthcare. In Handbook of Triboelectric Nanogenerators. Wang, Z. L., Yang, Y., Zhai, J., Wang, J., Eds.; Springer: Cham, 2023; pp 1–50.

    Google Scholar 

Download references

Acknowledgements

This is an invited review article for the Young Innovator Award in Nano Research. The authors acknowledge the Henry Samueli School of Engineering & Applied Science and the Department of Bioengineering at the University of California, Los Angeles for the startup support. J. C. also acknowledges the Hellman Fellows Research Grant, the UCLA Pandemic Resources Program Research Award, the Research Recovery Grant by the UCLA Academic Senate, and the Brain & Behavior Research Foundation Young Investigator Grant (Grant Number: 30944), and the Catalyzing Pediatric Innovation Grant (Grant Number: 47744) from the West Coast Consortium for Technology & Innovation in Pediatrics, Children’s Hospital Los Angeles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, V., Yin, J., Xiao, X. et al. Bioinspired nanomaterials for wearable sensing and human-machine interfacing. Nano Res. 17, 445–461 (2024). https://doi.org/10.1007/s12274-023-5725-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5725-8

Keywords

Navigation