Skip to main content
Log in

Coordination-driven self-assembly of metallo-nanodrugs for local inflammation alleviation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing dedicated nanomedicines to improve delivery efficacy of anti-inflammatory drugs is still a formidable challenge. In this study, we present an extremely simple yet efficient approach to obtain hybrid nanodrugs through metal-drug coordination-driven self-assembly for carrier-free drug delivery. The resulting metallo-nanodrugs exhibit well-defined morphology and high drug encapsulation capability, allowing for the combination of magnetic resonance imaging and anti-inflammatory therapy. In the case of osteoarthritis (OA), the metallo-nanodrugs remarkably alleviate synovial inflammation, preventing cartilage destruction and extracellular matrix loss. In addition, it led to significantly improved therapeutic efficacy compared with intra-articular administration of the same dose of free drugs in OA mouse model. This work provides a very simple approach for the development of anti-inflammatory nanoformulations by exploiting coordination-driven self-assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435.

    CAS  Google Scholar 

  2. Wieland, H. A.; Michaelis, M.; Kirschbaum, B. J.; Rudolphi, K. A. Osteoarthritis-an untreatable disease. Nat. Rev. Drug Discov. 2005, 4, 331–344.

    CAS  Google Scholar 

  3. Latourte, A.; Kloppenburg, M.; Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 2020, 16, 673–688.

    Google Scholar 

  4. Liu-Bryan, R.; Terkeltaub, R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol. 2015, 11, 35–44.

    CAS  Google Scholar 

  5. McAlindon, T. E.; LaValley, M. P.; Harvey, W. F.; Price, L. L.; Driban, J. B.; Zhang, M.; Ward, R. J. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis. JAMA 2017, 317, 1967–1975.

    CAS  Google Scholar 

  6. Evans, C. H.; Kraus, V. B.; Setton, L. A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 2014, 10, 11–22.

    CAS  Google Scholar 

  7. Larsen, C.; Østergaard, J.; Larsen, S. W.; Jensen, H.; Jacobsen, S.; Lindegaard, C.; Andersen, P. H. Intra-articular depot formulation principles: Role in the management of postoperative pain and arthritic disorders. J. Pharm. Sci. 2008, 97, 4622–4654.

    CAS  Google Scholar 

  8. Rosen, H.; Abribat, T. The rise and rise of drug delivery. Nat. Rev. Drug Discov. 2005, 4, 381–385.

    CAS  Google Scholar 

  9. Williams, R. M.; Chen, S.; Langenbacher, R. E.; Galassi, T. V.; Harvey, J. D.; Jena, P. V.; Budhathoki-Uprety, J.; Luo, M. K.; Heller, D. A. Harnessing nanotechnology to expand the toolbox of chemical biology. Nat. Chem. Biol. 2021, 17, 129–137.

    CAS  Google Scholar 

  10. Datta, S.; Saha, M. L.; Stang, P. J. Hierarchical assemblies of supramolecular coordination complexes. Acc. Chem. Res. 2018, 51, 2047–2063.

    CAS  Google Scholar 

  11. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 2013, 341, 1230444.

    Google Scholar 

  12. Foo, M. L.; Matsuda, R.; Kitagawa, S. Functional hybrid porous coordination polymers. Chem. Mater. 2014, 26, 310–322.

    CAS  Google Scholar 

  13. Liu, M. J.; Ren, X. L.; Meng, X. W.; Li, H. B. Metal-organic frameworks-based fluorescent nanocomposites for bioimaging in living cells and in vivo. Chin. J. Chem. 2021, 39, 473–487.

    CAS  Google Scholar 

  14. He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.

    CAS  Google Scholar 

  15. Zhou, J. J.; Han, H. Y.; Liu, J. W. Nucleobase, nucleoside, nucleotide, and oligonucleotide coordinated metal ions for sensing and biomedicine applications. Nano Res. 2022, 15, 71–84.

    CAS  Google Scholar 

  16. Zhang, Z.; Li, B.; Xie, L. S.; Sang, W.; Tian, H.; Li, J.; Wang, G. H.; Dai, Y. L. Metal-phenolic network-enabled lactic acid consumption reverses immunosuppressive tumor microenvironment for sonodynamic therapy. ACS Nano 2021, 15, 16934–16945.

    CAS  Google Scholar 

  17. Imaz, I.; Rubio-Martínez, M.; García-Fernández, L.; García, F.; Ruiz-Molina, D.; Hernando, J.; Puntes, V.; Maspoch, D. Coordination polymer particles as potential drug delivery systems. Chem. Commun. 2010, 46, 4737–4739.

    CAS  Google Scholar 

  18. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal–organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268.

    CAS  Google Scholar 

  19. Wang, D. D.; Jana, D.; Zhao, Y. L. Metal-organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 2020, 53, 1389–1400.

    CAS  Google Scholar 

  20. Taylor-Pashow, K. M. L.; Rocca, J. D.; Xie, Z. G.; Tran, S.; Lin W. B. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 2009, 131, 14261–14263.

    CAS  Google Scholar 

  21. Zheng, H. Q.; Zhang, Y. N.; Liu, L. F.; Wan, W.; Guo, P.; Nyström, A. M.; Zou, X. D. One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962–968.

    CAS  Google Scholar 

  22. Wang, P.; Zhou, F.; Yin, X.; Xie, Q. J.; Song, G. S.; Zhang, X. B. Nanovoid-confinement and click-activated nanoreactor for synchronous delivery of prodrug pairs and precise photodynamic therapy. Nano Res. 2022, 15, 9264–9273.

    CAS  Google Scholar 

  23. Ma, Y.; Li, X. Y.; Li, A. J.; Yang, P.; Zhang, C. Y.; Tang, B. H2S-activable MOF nanoparticle photosensitizer for effective photodynamic therapy against cancer with controllable singlet-oxygen release. Angew. Chem., Int. Ed. 2017, 56, 13752–13756.

    CAS  Google Scholar 

  24. Zhang, P. F.; Wang, J. Q.; Chen, H.; Zhao, L.; Chen, B. B.; Chu, C. C.; Liu, H.; Qin, Z. N.; Liu, J. Y.; Tan, Y. Z. et al. Tumor microenvironment-responsive ultrasmall nanodrug generators with enhanced tumor delivery and penetration. J. Am. Chem. Soc. 2018, 140, 14980–14989.

    Google Scholar 

  25. Hu, J. L.; Jiang, Q. Y.; Shi, T. H.; Lin, X.; Zhao, Y.; Wang, X. Y.; Liu, X. Q. In situ generated and amplified oxidative stress with metallo-nanodrug assembly for metastatic cancer therapy with high specificity and efficacy. Adv. Therap. 2021, 4, 2100148.

    CAS  Google Scholar 

  26. Zhu, W. J.; Chen, Q.; Jin, Q. T.; Chao, Y.; Sun, L. L.; Han, X.; Xu, J.; Tian, L. L.; Zhang, J. L.; Liu, T. et al. Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Res. 2021, 14, 212–221.

    CAS  Google Scholar 

  27. Cheng, K.; Liu, B.; Zhang, X. S.; Zhang, R. Y.; Zhang, F.; Ashraf, G.; Fan, G. Q.; Tian, M. Y.; Sun, X.; Yuan, J. et al. Biomimetic material degradation for synergistic enhanced therapy by regulating endogenous energy metabolism imaging under hypothermia. Nat. Commun. 2022, 13, 4567.

    CAS  Google Scholar 

  28. Luo, Z. C.; Liang, X. Q.; He, T.; Qin, X.; Li, X. C.; Li, Y. S.; Li, L.; Loh, X. J.; Gong, C. Y.; Liu, X. G. Lanthanide-nucleotide coordination nanoparticles for STING activation. J. Am. Chem. Soc. 2022, 144, 16366–16377.

    CAS  Google Scholar 

  29. Zhou, H. S.; Wang, Y. Y.; Hou, Y. Q.; Zhang, Z. K.; Wang, Q.; Tian, X. D.; Lu, H. Co-delivery of Cisplatin and chlorin e6 by poly(phosphotyrosine) for synergistic chemotherapy and photodynamic therapy. Chin. J. Chem. 2022, 40, 2428–2436.

    CAS  Google Scholar 

  30. Li, M. Y.; Wang, C. L.; Di, Z. H.; Li, H.; Zhang, J. F.; Xue, W. T.; Zhao, M. P.; Zhang, K.; Zhao, Y. L.; Li, L. L. Engineering multifunctional DNA hybrid nanospheres through coordination-driven self-assembly. Angew. Chem., Int. Ed. 2019, 58, 1350–1354.

    CAS  Google Scholar 

  31. Liu, B.; Hu, F.; Zhang, J. F.; Wang, C. L.; Li, L. L. A biomimetic coordination nanoplatform for controlled encapsulation and delivery of drug-gene combinations. Angew. Chem., Int. Ed. 2019, 58, 8804–8808.

    CAS  Google Scholar 

  32. Liu, C. Z.; Chen, Y. X.; Zhao, J.; Wang, Y.; Shao, Y. L.; Gu, Z. J.; Li, L. L.; Zhao, Y. L. Self-assembly of copper-DNAzyme nanohybrids for dual-catalytic tumor therapy. Angew. Chem., Int. Ed. 2021, 60, 14324–14328.

    CAS  Google Scholar 

  33. Zou, Z.; He, L. B.; Deng, X. X.; Wang, H. X.; Huang, Z. Y.; Xue, Q.; Qing, Z. H.; Lei, Y. L.; Yang, R. H.; Liu, J. W. Zn2+-coordination-driven RNA assembly with retained integrity and biological functions. Angew. Chem., Int. Ed. 2021, 60, 22970–22976.

    CAS  Google Scholar 

  34. Dubashynskaya, N. V.; Bokatyi, A. N.; Skorik, Y. A. Dexamethasone conjugates: Synthetic approaches and medical prospects. Biomedicines 2021, 9, 341.

    CAS  Google Scholar 

  35. Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.

    CAS  Google Scholar 

  36. Pan, Q.; Xu, Q. G.; Boylan, N. J.; Lamb, N. W.; Emmert, D. G.; Yang, J. C.; Tang, L.; Heflin, T.; Alwadani, S.; Eberhart, C. G. et al. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats. J. Control. Release 2015, 201, 32–40.

    CAS  Google Scholar 

  37. Muhammad, W.; Zhu, J. Q.; Zhai, Z. H.; Xie, J. Q.; Zhou, J. H.; Feng, X. D.; Feng, B.; Pan, Q. L.; Li, S. F.; Venkatesan, R. J. et al. ROS-responsive polymer nanoparticles with enhanced loading of dexamethasone effectively modulate the lung injury microenvironment. Acta Biomater. 2022, 148, 258–270.

    CAS  Google Scholar 

  38. Chen, Y. J.; Li, P.; Modica, J. A.; Drout, R. J.; Farha, O. K. Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: Protein encapsulation, protection, and release. J. Am. Chem. Soc. 2018, 140, 5678–5681.

    CAS  Google Scholar 

  39. Lu, Y. C.; Yeh, W. C.; Ohashi, P. S. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145–151.

    CAS  Google Scholar 

  40. Bode, J. G.; Ehlting, C.; Häussinger, D. The macrophage response towards LPS and its control through the p38MAPK-STAT3 axis. Cell. Signal. 2012, 24, 1185–1194.

    CAS  Google Scholar 

  41. Gilroy, D. W.; Colville-Nash, P. R. New insights into the role of COX 2 in inflammation. J. Mol. Med. 2000, 78, 121–129.

    CAS  Google Scholar 

  42. Zhao, C. Y.; Chen, J. X.; Ye, J. M.; Li, Z.; Su, L. C.; Wang, J. Q.; Zhang, Y.; Chen, J. H.; Yang, H. H.; Shi, J. J. et al. Structural transformative antioxidants for dual-responsive anti-inflammatory delivery and photoacoustic inflammation imaging. Angew. Chem., Int. Ed. 2021, 60, 14458–14466.

    CAS  Google Scholar 

  43. Mittal, M.; Siddiqui, M. R.; Tran, K.; Reddy, S. P.; Malik, A. B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167.

    CAS  Google Scholar 

  44. Zhao, P. C.; Xia, X. F.; Xu, X. Y.; Leung, K. K. C.; Rai, A.; Deng, Y. R.; Yang, B. G.; Lai, H. S.; Peng, X.; Shi, P. et al. Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nat. Commun. 2021, 12, 7162.

    CAS  Google Scholar 

  45. Jiang, K. Y.; Weaver, J. D.; Li, Y. J. Y.; Chen, X. J.; Liang, J. P.; Stabler, C. L. Local release of dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by promotion of anti-inflammatory M2 macrophages. Biomaterials 2017, 114, 71–81.

    CAS  Google Scholar 

  46. Loeser, R. F. Molecular mechanisms of cartilage destruction: Mechanics, inflammatory mediators, and aging collide. Arthrit. Rheumatol. 2016, 54, 1357–1360.

    Google Scholar 

  47. Li, M. Z.; Yin, H.; Yan, Z. N.; Li, H. Y.; Wu, J.; Wang, Y.; Wei, F.; Tian, G. Z.; Ning, C.; Li, H. et al. The immune microenvironment in cartilage injury and repair. Acta Biomater. 2022, 140, 23–42.

    CAS  Google Scholar 

  48. Glasson, S. S.; Chambers, M. G.; Van Den Berg, W. B.; Little, C. B. The OARSI histopathology initiative-recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis Cartilage 2010, 18 Suppl 3, S17–S23.

    Google Scholar 

  49. Chen, H. M.; Qin, Z. N.; Zhao, J. M.; He, Y.; Ren, E.; Zhu, Y.; Liu, G.; Mao, C. B.; Zheng, L. Cartilage-targeting and dual MMP-13/pH responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials 2019, 225, 119520.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially funded by the Beijing Natural Science Foundation (No. JQ20005) and Guangxi Science and Technology Major Project (No. GuikeAA19254002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lele Li or Li Zheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Di, Z., Zhang, J. et al. Coordination-driven self-assembly of metallo-nanodrugs for local inflammation alleviation. Nano Res. 16, 13259–13266 (2023). https://doi.org/10.1007/s12274-023-5721-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5721-z

Keywords

Navigation