Skip to main content
Log in

High EMI shielding effectiveness and superhydrophobic properties based on step-wise asymmetric structure constructed by one-step method

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It is of significance to prepare biodegradable electromagnetic interference (EMI) shielding materials with high EMI shielding effectiveness (SE) in order to solve electromagnetic and environmental pollution problems. In this paper, environmentally friendly EMI shielding silver nanowires (AgNWs)/poly(L-lactic acid) (PLLA)/poly(D-lactic acid) (PDLA)/ferroferric oxide (Fe3O4) composites with step-wise asymmetric structures were prepared by a facile one-step non-solvent-induced phase separation method. The conductive AgNW network was constructed at a low mass fraction of 5 wt.% on the surface of stereo-complexed crystalline poly(lactic acid) (SC-PLA) film (1.08 × 104 S/m). Moreover, magnetic Fe3O4 is mainly distributed in the skeleton of porous SC-PLA film. Due to the synergistic effect of AgNWs and Fe3O4, the EMI SE of SC-PLA films reaches up to 50.3 dB. Interestingly, SC-PLA film modified with triethoxy-1H,1H,2H,2H-tridecafluoro-n-octylsilane (TTO) demonstrates an outstanding water contact angle of about 150.2° compared with the pure PLLA film (134.7°), stemming from the synergistic effect of denser SC-PLA nano-protrusions and low-surface-energy TTO. Thus, we successfully fabricated the high EMI shielding SC-PLA film with wonderful superhydrophobicity, which extends the application performance and service life of portable electronics in moist environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Y. M.; Luo, H.; Guo, H. T.; Liu, K. M.; Mei, C. T.; Li, Y.; Duan, G. G.; He, S. J.; Han, J. Q.; Zheng, J. J. et al. Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydr. Polym. 2022, 276, 118799.

    CAS  Google Scholar 

  2. Kong, D. Y.; Li, J.; Guo, A. R.; Xiao, X. L. High temperature electromagnetic shielding shape memory polymer composite. Chem. Eng. J. 2021, 408, 127365.

    CAS  Google Scholar 

  3. Yang, J. M.; Liao, X.; Li, J. S.; He, G. J.; Zhang, Y.; Tang, W. Y.; Wang, G.; Li, G. X. Light-weight and flexible silicone rubber/MWCNTs/Fe3O4 nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption. Compos. Sci. Technol. 2019, 181, 107670.

    CAS  Google Scholar 

  4. Duan, H. J.; He, P. Y.; Zhu, H. X.; Yang, Y. Q.; Zhao, G. Z.; Liu, Y. Q. Constructing 3D carbon-metal hybrid conductive network in polymer for ultra-efficient electromagnetic interference shielding. Compos. Part B: Eng. 2021, 212, 108690.

    CAS  Google Scholar 

  5. Zhai, W.; Wang, C. F.; Wang, S.; Li, J. N.; Zhao, Y.; Zhan, P. F.; Dai, K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. Ultra-stretchable and multifunctional wearable electronics for superior electromagnetic interference shielding, electrical therapy, and biomotion monitoring. J. Mater. Chem. A 2021, 9, 7238–7247.

    CAS  Google Scholar 

  6. Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

    CAS  Google Scholar 

  7. Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

    CAS  Google Scholar 

  8. Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res., in press, https://doi.org/10.1007/s12274-023-5594-1.

  9. Mohan, R. R.; Abhilash, A.; Mani, M.; Varma, S. J.; Jayalekshmi, S. Nano CuO-embedded polyaniline films as efficient broadband electromagnetic shields. Mater. Chem. Phys. 2022, 290, 126647.

    CAS  Google Scholar 

  10. Retailleau, C.; Eddine, J. A.; Ndagijimana, F.; Haddad, F.; Bayard, B.; Sauviac, B.; Alcouffe, P.; Fumagalli, M.; Bounor-Legaré, V.; Serghei, A. Universal behavior for electromagnetic interference shielding effectiveness of polymer based composite materials. Compos. Sci. Technol. 2022, 221, 109351.

    CAS  Google Scholar 

  11. Yao, F. C.; Xie, W. H.; Ma, C.; Wang, D. D.; El-Bahy, Z. M.; Helal, M. H.; Liu, H.; Du, A.; Guo, Z. H.; Gu, H. B. Superb electromagnetic shielding polymer nanocomposites filled with 3-dimensional p-phenylenediamine/aniline copolymer nanofibers@copper foam hybrid nanofillers. Compos. Part B: Eng. 2022, 245, 110236.

    CAS  Google Scholar 

  12. Sun, Z. P.; Shen, B.; Li, Y.; Chen, J. L.; Zheng, W. G. High-performance porous carbon foams via catalytic pyrolysis of modified isocyanate-based polyimide foams for electromagnetic shielding. Nano Res. 2022, 15, 6851–6859.

    CAS  Google Scholar 

  13. Song, P. W.; Liao, X.; Zou, F. F.; Wang, X. H.; Liu, F.; Liu, S. L.; Li, G. X. Frequency-adjustable electromagnetic interference shielding performance of sandwich-structured conductive polymer composites by selective foaming and tunable filler dispersion. Compos. Commun. 2022, 34, 101264.

    Google Scholar 

  14. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

    CAS  Google Scholar 

  15. Yan, D. X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P. G.; Wang, J. H.; Li, Z. M. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559–566.

    CAS  Google Scholar 

  16. Xue, F.; Qi, X. D.; Huang, T.; Tang, C. Y.; Zhang, N.; Wang, Y. Preparation and application of three-dimensional filler network towards organic phase change materials with high performance and multi-functions. Chem. Eng. J. 2021, 419, 129620.

    CAS  Google Scholar 

  17. Zhang, X. Z.; Chen, X.; Qu, Y. L.; Wu, Y. N.; Wu, K.; Deng, H.; Fu, Q. Fabricating high performance multi-functional hygroelectric generator through a biomimic approach. Nano Energy 2022, 98, 107241.

    CAS  Google Scholar 

  18. Zhang, K.; Yu, H. O.; Yu, K. X.; Gao, Y.; Wang, M.; Li, J.; Guo, S. Y. A facile approach to constructing efficiently segregated conductive networks in poly(lactic acid)/silver nanocomposites via silver plating on microfibers for electromagnetic interference shielding. Compos. Sci. Technol. 2018, 156, 136–143.

    CAS  Google Scholar 

  19. Xue, B.; Li, Y.; Cheng, Z. L.; Yang, S. D.; Xie, L.; Qin, S. H.; Zheng, Q. Directional electromagnetic interference shielding based on step-wise asymmetric conductive networks. Nano-Micro Lett. 2022, 14, 16.

    CAS  Google Scholar 

  20. Tang, Z. H.; Yao, D. J.; Du, D. H.; Ouyang, J. Y. Highly machine-washable e-textiles with high strain sensitivity and high thermal conduction. J. Mater. Chem. C 2020, 8, 2741–2748.

    CAS  Google Scholar 

  21. Rao, J.; Ding, Q. Q.; Lv, Z. W.; Sun, D.; Lü, B. Z.; Chen, G. G.; Guan, Y.; Li, M. F.; Peng, F. Strong holocellulose-based nanopaper with a sandwich-like structure for effective electromagnetic shielding. ACS Sustainable Chem. Eng. 2022, 10, 11396–11405.

    CAS  Google Scholar 

  22. Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating. Compos. Part B: Eng. 2020, 198, 108250.

    CAS  Google Scholar 

  23. Sun, X.; Xue, B.; Yang, S. D.; Huo, K. W.; Liao, X. Y.; Li, X. J.; Xie, L.; Qin, S. H.; Zheng, Q. Structural conversion of PLLA/ZnO composites facilitated by interfacial crystallization to potential application in oil–water separation. Appl. Surf. Sci. 2020, 517, 146135.

    CAS  Google Scholar 

  24. Sun, X.; Yang, S. D.; Xue, B.; Huo, K. W.; Li, X. J.; Tian, Y. Z.; Liao, X. Y.; Xie, L.; Qin, S. H.; Xu, K. H. et al. Super-hydrophobic poly (lactic acid) by controlling the hierarchical structure and polymorphic transformation. Chem. Eng. J. 2020, 397, 125297.

    CAS  Google Scholar 

  25. Liang, C. B.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and Joule heating performances. ACS Appl. Mater. Interfaces 2020, 12, 18023–18031.

    CAS  Google Scholar 

  26. Doganay, D.; Coskun, S.; Kaynak, C.; Unalan, H. E. Electrical, mechanical, and thermal properties of aligned silver nanowire/polylactide nanocomposite films. Compos. Part B: Eng. 2016, 99, 288–296.

    CAS  Google Scholar 

  27. He, Y. J.; Shao, Y. W.; Xiao, Y. Y.; Yang, J. H.; Qi, X. D.; Wang, Y. Multifunctional phase change composites based on elastic MXene/silver nanowire sponges for excellent thermal/solar/electric energy storage, shape memory, and adjustable electromagnetic interference shielding functions. ACS Appl. Mater. Interfaces 2022, 14, 6057–6070.

    CAS  Google Scholar 

  28. Sheng, A.; Ren, W.; Yang, Y. Q.; Yan, D. X.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q.; Li, Z. M. Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Compos. Part A: Appl. Sci. Manuf. 2020, 129, 105692.

    CAS  Google Scholar 

  29. Zhao, G. J.; Cao, X. Y.; Zhang, Q.; Deng, H.; Fu, Q. A novel interpenetrating segregated functional filler network structure for ultra-high electrical conductivity and efficient EMI shielding in CPCs containing carbon nanotubes. Mater. Today Phys. 2021, 21, 100483.

    CAS  Google Scholar 

  30. Wang, Y. L.; Jia, Y. Y.; Zhou, Y. J.; Wang, Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Ultra-stretchable, sensitive, and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. J. Mater. Chem. C 2018, 6, 8160–8170.

    CAS  Google Scholar 

  31. Sun, X.; Yang, S. D.; Xue, B.; Li, J. L.; Wang, Y. W.; Gao, C. T.; Qin, S. H. Controllable surface morphology transition from interconnected pores to flower-like structures for super-hydrophobic poly (L-lactic acid) films. Surf. Coat. Technol. 2021, 412, 127032.

    CAS  Google Scholar 

  32. Guo, Y. F.; Sun, X.; Xue, B.; Zhou, Y.; Xie, L.; Zheng, Q. Carbon quantum dots-driven surface morphology transformation towards superhydrophobic poly(lactic acid) film. Colloid Surface A 2023, 656, 130547.

    CAS  Google Scholar 

  33. Sun, X.; Xue, B.; Yang, S. D.; Guo, Y. F.; Qin, S. H. Controllable surficial and internal hierarchical structures of porous poly (L-lactic acid) membranes for hydrophobicity and potential application in oil–water separation. Surf. Interfaces 2021, 24, 101147.

    CAS  Google Scholar 

  34. Tang, L.; Tang, Y. S.; Zhang, J. L.; Lin, Y. H.; Kong, J.; Zhou, K.; Gu, J. W. High-strength super-hydrophobic double-layered PBO nanofiber-polytetrafluoroethylene nanocomposite paper for high-performance wave-transparent applications. Sci. Bull. 2022, 67, 2196–2207.

    CAS  Google Scholar 

  35. Gao, A. L.; Zhao, Y. Q.; Yang, Q.; Fu, Y. Y.; Xue, L. X. Facile preparation of patterned petal-like PLA surfaces with tunable water micro-droplet adhesion properties based on stereo-complex co-crystallization from non-solvent induced phase separation processes. J. Mater. Chem. A 2016, 4, 12058–12064.

    CAS  Google Scholar 

  36. Wang, Y. Y.; Zhou, Z. H.; Zhou, C. G.; Sun, W. J.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 8704–8712.

    CAS  Google Scholar 

  37. Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

    Google Scholar 

  38. Sawalha, H.; Schroën, K.; Boom, R. Mechanical properties and porosity of polylactide for biomedical applications. J. Appl. Polym. Sci. 2008, 107, 82–93.

    CAS  Google Scholar 

  39. Saeidlou, S.; Huneault, M. A.; Li, H. B.; Sammut, P.; Park, C. B. Evidence of a dual network/spherulitic crystalline morphology in PLA stereocomplexes. Polymer 2012, 53, 5816–5824.

    CAS  Google Scholar 

  40. Hu, J. L.; Tang, Z. H.; Qiu, X. Y.; Pang, X.; Yang, Y. K.; Chen, X. S.; Jing, X. B. Formation of flower- or cake-shaped stereocomplex particles from the stereo multiblock copoly(rac-lactide)s. Biomacromolecules 2005, 6, 2843–2850.

    CAS  Google Scholar 

  41. Li, Y.; Yu, Y. C.; Han, C. Y.; Wang, X. H.; Huang, D. X. Sustainable blends of poly(propylene carbonate) and stereocomplex polylactide with enhanced rheological properties and heat resistance. Chin. J. Polym. Sci. 2020, 38, 1267–1275.

    CAS  Google Scholar 

  42. Herc, A. S.; Lewiński, P.; Kaźmierski, S.; Bojda, J.; Kowalewska, A. Hybrid SC-polylactide/poly(silsesquioxane) blends of improved thermal stability. Thermochim. Acta 2020, 687, 178592.

    CAS  Google Scholar 

  43. Ruan, K. P.; Gu, J. W. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 2022, 55, 4134–4145.

    CAS  Google Scholar 

  44. Zhang, J.; Li, J. Q.; Wei, Q. Y.; Chen, Y.; Jia, D. Z.; Lin, H.; Zhong, G. J.; Li, Z. M. Light weight, low dielectric constant, super-robust polylactide film based on stress-induced cavitation aided by crystallization. Polymer 2022, 256, 125234.

    CAS  Google Scholar 

  45. Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

    CAS  Google Scholar 

  46. Xia, X. F.; Xiao, Q. L. Electromagnetic interference shielding of 2D transition metal carbide (MXene)/metal ion composites. Nanomaterials 2021, 11, 2929.

    CAS  Google Scholar 

  47. Zhang, S. M.; Deng, H.; Zhang, Q.; Fu, Q. Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. ACS Appl. Mater. Interfaces 2014, 6, 6835–6844.

    CAS  Google Scholar 

  48. Li, Y.; Xu, G. J.; Guo, Y. Q.; Ma, T. B.; Zhong, X.; Zhang, Q. Y.; Gu, J. W. Fabrication, proposed model, and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers. Compos. Part A: Appl. Sci. Manuf. 2018, 107, 570–578.

    CAS  Google Scholar 

  49. Zhai, W.; Zhu, J. Z.; Wang, Z. Q.; Zhao, Y.; Zhan, P. F.; Wang, S.; Zheng, G. Q.; Shao, C. G.; Dai, K.; Liu, C. T. et al. Stretchable, sensitive strain sensors with a wide workable range and low detection limit for wearable electronic skins. ACS Appl. Mater. Interfaces 2022, 14, 4562–4570.

    CAS  Google Scholar 

  50. Han, Y. X.; Ruan, K. P.; Gu, J. W. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem., Int. Ed. 2023, 62, e202216093.

    CAS  Google Scholar 

  51. Yang, W. X.; Zhao, Z. D.; Wu, K.; Huang, R.; Liu, T. Y.; Jiang, H.; Chen, F.; Fu, Q. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 2017, 5, 3748–3756.

    CAS  Google Scholar 

  52. Xu, Y. D.; Lin, Z. Q.; Yang, Y. Q.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q.; Hu, Y. G.; Sun, R.; Wong, C. P. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 2022, 9, 708–719.

    CAS  Google Scholar 

  53. Cao, M. S.; Yang, J.; Song, W. L.; Zhang, D. Q.; Wen, B.; Jin, H. B.; Hou, Z. L.; Yuan, J. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 2012, 4, 6949–6956.

    CAS  Google Scholar 

  54. Zeng, Z. H.; Chen, M. J.; Jin, H.; Li, W. W.; Xue, X.; Zhou, L. C.; Pei, Y. M.; Zhang, H.; Zhang, Z. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 2016, 96, 768–777.

    CAS  Google Scholar 

  55. Zhan, Z. Y.; Song, Q. C.; Zhou, Z. H.; Lu, C. H. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. J. Mater. Chem. C 2019, 7, 9820–9829.

    CAS  Google Scholar 

  56. Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

    CAS  Google Scholar 

  57. Wang, M. L.; Zhang, S.; Zhou, Z. H.; Zhu, J. L.; Gao, J. F.; Dai, K.; Huang, H. D.; Li, Z. M. Facile heteroatom doping of biomass-derived carbon aerogels with hierarchically porous architecture and hybrid conductive network: Towards high electromagnetic interference shielding effectiveness and high absorption coefficient. Compos. Part B: Eng. 2021, 224, 109175.

    CAS  Google Scholar 

  58. Jia, L. C.; Yan, D. X.; Cui, C. H.; Jiang, X.; Ji, X.; Li, Z. M. Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks. J. Mater. Chem. C 2015, 3, 9369–9378.

    CAS  Google Scholar 

  59. Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater., in press, https://doi.org/10.1002/adma.202211642.

  60. Jin, L. Y.; Cao, W. J.; Wang, P.; Song, N.; Ding, P. Interconnected MXene/graphene network constructed by soft template for multiperformance improvement of polymer composites. Nano-Micro Lett. 2022, 14, 133.

    CAS  Google Scholar 

  61. Jin, L. Y.; Wang, P.; Cao, W. J.; Song, N.; Ding, P. Isolated solid wall-assisted thermal conductive performance of three-dimensional anisotropic MXene/graphene polymeric composites. ACS Appl. Mater. Interfaces 2022, 14, 1747–1756.

    CAS  Google Scholar 

  62. Wang, W. Y.; Ma, X.; Shao, Y. W.; Qi, X. D.; Yang, J. H.; Wang, Y. Flexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistance. J. Mater. Chem. A 2021, 9, 5033–5044.

    CAS  Google Scholar 

  63. Nampoothiri, K. M.; Nair, N. R.; John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501.

    Google Scholar 

  64. Sun, X.; Xue, B.; Tian, Y. Z.; Qin, S. H.; Xie, L. 3D porous poly(L-lactic acid) materials with controllable multi-scale microstructures and their potential application in oil–water separation. Appl. Surf. Sci. 2018, 462, 633–640.

    CAS  Google Scholar 

  65. Xie, C. M.; Lu, X.; Han, L.; Xu, J. L.; Wang, Z. M.; Jiang, L. L.; Wang, K. F.; Zhang, H. P.; Ren, F. Z.; Tang, Y. H. Biomimetic mineralized hierarchical graphene oxide/chitosan scaffolds with adsorbability for immobilization of nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces 2016, 8, 1707–1717.

    CAS  Google Scholar 

  66. Xiong, Z.; Lin, H. B.; Zhong, Y.; Qin, Y.; Li, T. T.; Liu, F. Robust superhydrophilic polylactide (PLA) membranes with a TiO2 nano-particle inlaid surface for oil/water separation. J. Mater. Chem. A 2017, 5, 6538–6545.

    CAS  Google Scholar 

  67. Zheng, N.; Liu, J.; Wang, G. Q.; Yao, P.; Dang, L. H.; Liu, Z.; Lu, J. F.; Li, W. G. Robust UV/moisture dual curable PDMS-microcapsule-silica functional material for self-healing, antifouling, and antibacterial applications. Nano Res., in press, https://doi.org/10.1007/s12274-023-5563-8.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52263003 and 51963003) and the Guizhou Provincial Science and Technology Projects (Nos. [2020]1Z044 and ZK[2022]Maj019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Xie or Bai Xue.

Electronic Supplementary Material

12274_2023_5713_MOESM1_ESM.pdf

High EMI shielding effectiveness and superhydrophobic properties based on step-wise asymmetric structure constructed by one-step method

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Wu, C., Xie, L. et al. High EMI shielding effectiveness and superhydrophobic properties based on step-wise asymmetric structure constructed by one-step method. Nano Res. 16, 10483–10492 (2023). https://doi.org/10.1007/s12274-023-5713-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5713-z

Keywords

Navigation