Skip to main content
Log in

Tumor microenvironment-responsive modular integrated nanocomposites for magnetically targeted and photothermal enhanced catalytic therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Achieving efficient integration of cancer diagnosis and therapy is of great significance to human health, but the construction of a multifunctional intelligent therapy system still faces great challenges. In this study, we report an integrated multifunctional nanocomposite constructed by a simple modular assembly technology. The nanocomposites are composed of three different nanomaterials: Fe3O4, Au, and NaErF4:0.5%Tm@NaYF4 upconversion nanoparticles (UCNPs). In this design, Fe3O4 nanoparticles have nanozyme effect of peroxidase-like activity, which can react with H2O2 in the tumor microenvironment to generate hydroxyl radicals. Because of its magnetic properties, it can help the nanocomposites to aggregate under the induction of magnetic fields. Au nanoparticles exhibit nanozyme effect of glucose oxidase-like activity. It can catalyze the conversion of glucose to gluconic acid and H2O2. Ingeniously, the generated H2O2 provides a source of reactants for the reaction of the Fe3O4 nanozyme. In addition, the photothermal effect of Au nanoparticles under 808 nm irradiation further enhanced the nanozyme activity of Fe3O4 and Au nanoparticles. Besides, UCNPs can emit near-infrared (NIR)-II fluorescence under 808 nm irradiation, which can provide imaging-guided during cancer treatment. Then, the nanocomposites were further modified by poly(vinylpyrrolidone) (PVP) to obtain UCNPs/Au/Fe3O4-PVP with good biocompatibility and high-efficiency cancer treatment ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waks, A. G.; Winer, E. P. Breast cancer treatment: A review. JAMA 2019, 321, 288–300.

    Article  CAS  Google Scholar 

  2. Wang, Y. G.; Xia, G. M.; Tan, M. M.; Wang, M. D.; Li, Y. Z.; Wang, H. M. H-dimeric nanospheres of amphipathic squaraine dye with an 81. 2% photothermal conversion efficiency for photothermal therapy. Adv. Funct. Mater. 2022, 32, 2113098.

    Article  CAS  Google Scholar 

  3. Chang, M. Y.; Hou, Z. Y.; Wang, M.; Yang, C. Z.; Wang, R. F.; Li, F.; Liu, D. L.; Peng, T. L.; Li, C. X.; Lin, J. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem., Int. Ed. 2021, 60, 12971–12979.

    Article  CAS  Google Scholar 

  4. Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

    Article  CAS  Google Scholar 

  5. Feng, W.; Han, X. G.; Hu, H.; Chang, M. Q.; Ding, L.; Xiang, H. J.; Chen, Y.; Li, Y. H. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 2021, 12, 2203.

    Article  CAS  Google Scholar 

  6. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom Iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    Article  CAS  Google Scholar 

  7. Kalashnikova, I.; Chung, S. J.; Nafiujjaman, M.; Hill, M. L.; Siziba, M. E.; Contag, C. H.; Kim, T. Ceria-based nanotheranostic agent for rheumatoid arthritis. Theranostics 2020, 10, 11863–11880.

    Article  CAS  Google Scholar 

  8. Li, Y. H.; Sun, Y.; Cao, T. Y.; Su, Q. Q.; Li, Z. L.; Huang, M. X.; Ouyang, R. Z.; Chang, H. Z.; Zhang, S. P.; Miao, Y. Q. A cation-exchange controlled core-shell MnS@Bi2S3 theranostic platform for multimodal imaging guided radiation therapy with hyperthermia boost. Nanoscale 2017, 9, 14364–14375.

    Article  CAS  Google Scholar 

  9. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    Article  CAS  Google Scholar 

  10. Liu, J. M.; Wang, A. Z.; Liu, S. H.; Yang, R. Q.; Wang, L. W.; Gao, F. E.; Zhou, H. G.; Yu, X.; Liu, J.; Chen, C. Y. A titanium nitride nanozyme for PH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew. Chem., Int. Ed. 2021, 60, 25328–25338.

    Article  CAS  Google Scholar 

  11. Liu, Q. Q.; Tian, J. W.; Liu, J. J.; Zhu, M. S.; Gao, Z. X.; Hu, X. Y.; Midgley, A. C.; Wu, J.; Wang, X. Y.; Kong, D. L. et al. Modular assembly of tumor-penetrating and oligomeric nanozyme based on intrinsically self-assembling protein nanocages. Adv. Mater. 2021, 33, 2103128.

    Article  CAS  Google Scholar 

  12. Wang, D. D.; Jana, D.; Zhao, Y. L. Metal-organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 2020, 53, 1389–1400.

    Article  CAS  Google Scholar 

  13. Wang, D. D.; Wu, H. H.; Wang, C. L.; Gu, L.; Chen, H. Z.; Jana, D.; Feng, L. L.; Liu, J. W.; Wang, X. Y.; Xu, P. P. et al. Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy. Angew. Chem., Int. Ed. 2021, 60, 3001–3007.

    Article  CAS  Google Scholar 

  14. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  CAS  Google Scholar 

  15. Wen, M.; Ouyang, J.; Wei, C. W.; Li, H.; Chen, W. S.; Liu, Y. N. Artificial enzyme catalyzed cascade reactions: Antitumor immunotherapy reinforced by NIR-II light. Angew. Chem., Int. Ed. 2019, 58, 17425–17432.

    Article  CAS  Google Scholar 

  16. Weng, Q. J.; Sun, H.; Fang, C. Y.; Xia, F.; Liao, H. W.; Lee, J.; Wang, J. C.; Xie, A.; Ren, J. F.; Guo, X. et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat. Commun. 2021, 12, 1436.

    Article  CAS  Google Scholar 

  17. Yang, Y.; Zhu, D. M.; Liu, Y.; Jiang, B.; Jiang, W.; Yan, X. Y.; Fan, K. L. Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy. Nanoscale 2020, 12, 13548–13557.

    Article  CAS  Google Scholar 

  18. Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C. et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew. Chem., Int. Ed. 2021, 60, 9480–9488.

    Article  CAS  Google Scholar 

  19. Lei, P. P.; An, R.; Zhang, P.; Yao, S.; Song, S. Y.; Dong, L. L.; Xu, X.; Du, K. M.; Feng, J.; Zhang, H. J. Ultrafast synthesis of ultrasmall poly(Vinylpyrrolidone)-protected bismuth nanodots as a multifunctional theranostic agent for in vivo dual-modal CT/Photothermal-imaging-guided photothermal therapy. Adv. Funct. Mater. 2017, 27, 1702018.

    Article  Google Scholar 

  20. Liu, X. Y.; Yang, Y.; Wang, X. Y.; Liu, X.; Cheng, H. L.; Wang, P. S.; Shen, Y. H.; Xie, A. J.; Zhu, M. Z. Self-assembled Au4Cu4/Au25 NCs@liposome tumor nanotheranostics with PT/fluorescence imaging-guided synergetic PTT/PDT. J. Mater. Chem. B 2021, 9, 6396–6405.

    Article  CAS  Google Scholar 

  21. Liu, X. J.; Zhang, M. Y.; Yan, D. W.; Deng, G. Y.; Wang, Q.; Li, C. L.; Zhao, L. J.; Lu, J. A smart theranostic agent based on Fe-HPPy@Au/DOX for CT imaging and PTT/chemotherapy/CDT combined anticancer therapy. Biomater. Sci. 2020, 8, 4067–4072.

    Article  CAS  Google Scholar 

  22. Mei, Z. H.; Gao, D. Y.; Hu, D. H.; Zhou, H. C.; Ma, T.; Huang, L.; Liu, X.; Zheng, R. Q.; Zheng, H. R.; Zhao, P. et al. Activatable NIR-II photoacoustic imaging and photochemical synergistic therapy of MRSA infections using miniature Au/Ag nanorods. Biomaterials 2020, 251, 120092.

    Article  CAS  Google Scholar 

  23. Zhang, Y. Y.; Lv, F.; Cheng, Y. R.; Yuan, Z. P.; Yang, F.; Liu, C. H.; Cao, Y.; Zhang, K.; Lu, H. T.; Zada, S. et al. Pd@Au bimetallic nanoplates decorated mesoporous MnO2 for synergistic nucleus-targeted NIR-II photothermal and hypoxia-relieved photodynamic therapy. Adv. Healthcare Mater. 2020, 9, 1901528.

    Article  CAS  Google Scholar 

  24. Wang, J. X.; Yao, C. J.; Shen, B.; Zhu, X. H.; Li, Y.; Shi, L. Y.; Zhang, Y.; Liu, J. L.; Wang, Y. L.; Sun, L. N. Upconversion-magnetic carbon sphere for near infrared light-triggered bioimaging and photothermal therapy. Theranostics 2019, 9, 608–619.

    Article  CAS  Google Scholar 

  25. Dibaba, S. T.; Xie, Y.; Xi, W. S.; Bednarkiewicz, A.; Ren, W.; Sun, L. N. Nd3+-sensitized upconversion nanoparticle coated with antimony shell for bioimaging and photothermal therapy in vitro using single laser irradiation. J. Rare Earths 2022, 40, 862–869.

    Article  CAS  Google Scholar 

  26. De Marchi, S.; Vázquez-Iglesias, L.; Bodelón, G.; Pérez-Juste, I.; Fernández, L. Á.; Pérez-Juste, J.; Pastoriza-Santos, I. Programmable modular assembly of functional proteins on raman-encoded Zeolitic Imidazolate Framework-8 (ZIF-8) nanoparticles as SERS tags. Chem. Mater. 2020, 32, 5739–5749.

    Article  CAS  Google Scholar 

  27. Guo, J. L.; Tardy, B. L.; Christofferson, A. J.; Dai, Y. L.; Richardson, J. J.; Zhu, W.; Hu, M.; Ju, Y.; Cui, J. W.; Dagastine, R. R. et al. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat. Nanotechnol. 2016, 11, 1105–1111.

    Article  CAS  Google Scholar 

  28. Guo, J. M.; Yu, Y. L.; Zhu, W.; Serda, R. E.; Franco, S.; Wang, L.; Lei, Q.; Agola, J. O.; Noureddine, A.; Ploetz, E. et al. Modular assembly of red blood cell superstructures from metal-organic framework nanoparticle-based building blocks. Adv. Funct. Mater. 2021, 31, 2005935.

    Article  CAS  Google Scholar 

  29. Pazos-Perez, N.; Fitzgerald, J. M.; Giannini, V.; Guerrini, L.; Alvarez-Puebla, R. A. Modular assembly of plasmonic core-satellite structures as highly brilliant SERS-encoded nanoparticles. Nanoscale Adv. 2019, 1, 122–131.

    Article  CAS  Google Scholar 

  30. Wu, H. M.; Zhang, X. R.; Wei, C. J.; Wang, C. C.; Jiang, M.; Hong, X.; Xu, Z. K.; Chen, D. J.; Huang, X. J. Modular assembly of enzyme loaded nanoparticles in 3D hollow fiber electrode for electrochemical sensing. Chem. Eng. J. 2021, 421, 129721.

    Article  CAS  Google Scholar 

  31. Xu, L.; Xu, S. J.; Wang, H. X.; Zhang, J.; Chen, Z.; Pan, L. H.; Wang, J. G.; Wei, X. Y.; Xie, H. Y.; Zhou, L. et al. Enhancing the efficacy and safety of doxorubicin against hepatocellular carcinoma through a modular assembly approach: The combination of polymeric prodrug design, nanoparticle encapsulation, and cancer cell-specific drug targeting. ACS Appl. Mater. Interfaces 2018, 10, 3229–3240.

    Article  CAS  Google Scholar 

  32. Zhang, Z.; Jayakumar, M. K. G.; Shikha, S.; Zhang, Y.; Zheng, X.; Zhang, Y. Modularly assembled upconversion nanoparticles for orthogonally controlled cell imaging and drug delivery. ACS Appl. Mater. Interfaces 2020, 12, 12549–12556.

    Article  CAS  Google Scholar 

  33. Zhou, A. W.; Du, J. J.; Jiao, M. Y.; Xie, D. P.; Wang, Q. Q.; Xue, L. J.; Ju, C. Y.; Hua, Z. C.; Zhang, C. Co-delivery of TRAIL and siHSP70 using hierarchically modular assembly formulations achieves enhanced TRAIL-resistant cancer therapy. J. Control. Release 2019, 304, 111–124.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial aid from the National Natural Science Foundation of China (Nos. 22020102003, 21834007, and 52103276), the National Key R&D Program of China (No. 2020YFA0712102), the Program of Science and Technology Development Plan of Jilin Province of China (No. 20220508076RC), the Natural Science Foundation of Guangdong Province of China (No. 2022A1515010947), and Guangzhou Basic and Applied Basic Research Foundation (No. 202201011343).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengpeng Lei, Zhen Zhang or Hongjie Zhang.

Electronic Supplementary Material

12274_2023_5706_MOESM1_ESM.pdf

Tumor microenvironment-responsive modular integrated nanocomposites for magnetically targeted and photothermal enhanced catalytic therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Liu, Y., Lei, P. et al. Tumor microenvironment-responsive modular integrated nanocomposites for magnetically targeted and photothermal enhanced catalytic therapy. Nano Res. 16, 9826–9834 (2023). https://doi.org/10.1007/s12274-023-5706-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5706-y

Keywords

Navigation