Skip to main content
Log in

Radical organometallic nanocages with redox switchable poly-NHC ligands

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing discrete radical organometallic nanocages is essential for fabricating functional materials. In this study, we construct a series of poly-NHC-based (NHC = N-heterocyclic carbene) organometallic nanocages 3a–3c with different sizes by employing redox-active bis(triarylamine) derivatives with different π-conjugated spacers as building blocks. The varied sizes of nanocages 3a–3c modulate the distance of the redox-active centers and reversibly convert them to radical nanocages 3a2+3c2+ through chemical and electrochemical oxidation. Radical nanocages 3a2+3c2+ display clear bond and angle alteration and retention of their three-dimensional topologies. This work not only merely proves that these nanocages are excellent stimulus-responsive materials but also opens a door to the rational design of novel radical organometallic nanocages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, J. L.; Yang, C. L.; Zhao, Y. L. Long-lived organic room-temperature phosphorescence from amorphous polymer systems. Acc. Chem. Res. 2022, 55, 1160–1170.

    CAS  Google Scholar 

  2. Blanco-Gómez, A.; Cortón, P.; Barravecchia, L.; Neira, I.; Pazos, E.; Peinador, C.; Garcia, M. D. Controlled binding of organic guests by stimuli-responsive macrocycles. Chem. Soc. Rev. 2020, 49, 3834–3862.

    Google Scholar 

  3. Chen, L. J.; Yang, H. B. Construction of stimuli-responsive functional materials via hierarchical self-assembly involving coordination interactions. Acc. Chem. Res. 2018, 57, 2699–2710.

    Google Scholar 

  4. Kakuta, T.; Yamagishi, T. A.; Ogoshi, T. Stimuli-responsive supramolecular assemblies constructed from pillar[n]arenes. Acc. Chem. Res. 2018, 57, 1656–1666.

    Google Scholar 

  5. Han, J. Q.; Chun, Y. K.; Chan, S. L.; Cheng, S. C.; Yiu, S. M.; Ko, C. C. Development of dual phosphorescent materials based on multiple stimuli-responsive Ir(III) acyclic carbene complexes. CCS Chem. 2022, 4, 2354–2368.

    CAS  Google Scholar 

  6. Grzelczak, M.; Liz-Marzán, L. M.; Klajn, R. Stimuli-responsive self-assembly of nanoparticles. Chem. Soc. Rev. 2019, 48, 1342–1361.

    CAS  Google Scholar 

  7. Zhou, Z. X.; Vázquez-González, M.; Willner, I. Stimuli-responsive metal-organic framework nanoparticles for controlled drug delivery and medical applications. Chem. Soc. Rev. 2021, 50, 4541–4563.

    CAS  Google Scholar 

  8. Li, Y.; Yang, T. F.; Li, N.; Bai, S.; Li, X.; Ma, L. L.; Wang, K.; Zhang, Y. M.; Han, Y. F. Multistimuli-responsive fluorescent organometallic assemblies based on mesoionic carbene-decorated tetraphenylethene ligands and their applications in cell imaging. CCS Chem. 2022, 4, 732–743.

    CAS  Google Scholar 

  9. Song, B. L.; Zhang, X. H.; Qiao, Z. Y.; Wang, H. Peptide-based AIEgens: From molecular design, stimuli responsiveness to biomedical application. CCS Chem. 2022, 4, 437–455.

    CAS  Google Scholar 

  10. Wang, X. H.; Wang, X. Y.; Jin, S. X.; Muhammad, N.; Guo, Z. J. Stimuli-responsive therapeutic metallodrugs. Chem. Rev. 2019, 779, 1138–1192.

    Google Scholar 

  11. Wajs, E.; Nielsen, T. T.; Larsen, K. L.; Fragoso, A. Preparation of stimuli-responsive nano-sized capsules based on cyclodextrin polymers with redox or light switching properties. Nano Res. 2016, 9, 2070–2078.

    CAS  Google Scholar 

  12. Wu, J. T.; Lin, H. T.; Liou, G. S. Synthesis and characterization of novel triarylamine derivatives with dimethylamino substituents for application in optoelectronic devices. ACS Appl. Mater. Interfaces 2019, 77, 14902–14908.

    Google Scholar 

  13. Baroncini, M.; Silvi, S.; Credi, A. Photo- and redox-driven artificial molecular motors. Chem. Rev. 2020, 720, 200–268.

    Google Scholar 

  14. McCune, J. A.; Kuehnel, M. F.; Reisner, E.; Scherman, O. A. Stimulus-mediated ultrastable radical formation. Chem 2020, 6, 1819–1830.

    CAS  Google Scholar 

  15. Zhang, H. N.; Yu, W. B.; Lin, Y. J.; Jin, G. X. Stimuli-responsive topological transformation of a molecular borromean ring via controlled oxidation of thioether moieties. Angew. Chem., Int. Ed. 2021, 60, 15466–15471.

    CAS  Google Scholar 

  16. Krykun, S.; Dekhtiarenko, M.; Canevet, D.; Carré, V.; Aubriet, F.; Levillain, E.; Allain, M.; Voitenko, Z.; Sallé, M.; Goeb, S. Metalla-assembled electron-rich tweezers: Redox-controlled guest release through supramolecular dimerization. Angew. Chem., Int. Ed. 2020, 59, 716–720.

    CAS  Google Scholar 

  17. Yazaki, K.; Noda, S.; Tanaka, Y.; Sei, Y.; Akita, M.; Yoshizawa, M. An M2L4 molecular capsule with a redox switchable polyradical shell. Angew. Chem., Int. Ed. 2016, 55, 15031–15034.

    CAS  Google Scholar 

  18. Klajn, R.; Olson, M. A.; Wesson, P. J.; Fang, L.; Coskun, A.; Trabolsi, A.; Soh, S.; Stoddart, J. F.; Grzybowski, B. A. Dynamic hook-and-eye nanoparticle sponges. Nat. Chem. 2009, 7, 733–738.

    Google Scholar 

  19. Cai, K.; Cui, B. B.; Song, B.; Wang, H.; Qiu, Y. Y.; Jones, L. O.; Liu, W. Q.; Shi, Y.; Vemuri, S.; Shen, D. K. et al. Radical cyclic [3]daisy chains. Chem 2021, 7, 174–189.

    CAS  Google Scholar 

  20. Moulin, E.; Armao IV, J. J.; Giuseppone, N. Triarylamine-based supramolecular polymers: Structures, dynamics, and functions. Acc. Chem. Res. 2019, 52, 975–983.

    CAS  Google Scholar 

  21. Hirao, Y.; Urabe, M.; Ito, A.; Tanaka, K. Intramolecular spin transfer in a spiro-fused bis(triarylamine). Angew. Chem., Int. Ed. 2007, 46, 3300–3303.

    CAS  Google Scholar 

  22. Zheng, S. J.; Barlow, S.; Risko, C.; Kinnibrugh, T. L.; Khrustalev, V. N.; Jones, S. C.; Antipin, M. Y.; Tucker, N. M.; Timofeeva, T. V.; Coropceanu, V. et al. Isolation and crystal structures of two singlet bis(triarylamine) dications with nonquinoidal geometries. J. Am. Chem. Soc. 2006, 728, 1812–1817.

    Google Scholar 

  23. Lambert, C.; Nöll, G. The class II/III transition in triarylamine redox systems. J. Am. Chem. Soc. 1999, 727, 8434–8442.

    Google Scholar 

  24. Szeghalmi, A. V.; Erdmann, M.; Engel, V.; Schmitt, M.; Amthor, S.; Kriegisch, V.; Nöll, G.; Stahl, R.; Lambert, C.; Leusser, D. et al. How delocalized is N,N,N′,N′-tetraphenylphenylenediamine radical cation. An experimental and theoretical study on the electronic and molecular structure. J.Am. Chem. Soc. 2004, 726, 7834–7845.

    Google Scholar 

  25. Lambert, C.; Nöll, G.; Schelter, J. Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems. Nat. Mater. 2002, 7, 69–73.

    Google Scholar 

  26. Lambert, C.; Risko, C.; Coropceanu, V.; Schelter, J.; Amthor, S.; Gruhn, N. E.; Durivage, J. C.; Brédas, J. L. Electronic coupling in tetraanisylarylenediamine mixed-valence systems: The interplay between bridge energy and geometric factors. J. Am. Chem. Soc. 2005, 727, 8508–8516.

    Google Scholar 

  27. Tan, G. W.; Wang, X. P. Isolable bis(triarylamine) dications: Analogues of Thiele’s, Chichibabin’s, and Muller’s hydrocarbons. Acc. Chem. Res. 2017, 50, 1997–2006.

    CAS  Google Scholar 

  28. Gao, W. X.; Feng, H. J.; Guo, B. B.; Lu, Y.; Jin, G. X. Coordination-directed construction of molecular links. Chem. Rev. 2020, 720, 6288–6325.

    Google Scholar 

  29. Chen, L. J.; Yang, H. B.; Shionoya, M. Chiral metallosupramolecular architectures. Chem. Soc. Rev. 2017, 46, 2555–2576.

    CAS  Google Scholar 

  30. Sinha, N.; Hahn, F. E. Metallosupramolecular architectures obtained from poly-N-heterocyclic carbene ligands. Acc. Chem. Res. 2017, 50, 2167–2184.

    CAS  Google Scholar 

  31. Shi, W. J.; Li, X.; Li, P.; Han, Y. F. Bottom-up construction of mesoporous supramolecular isomers based on a Pd3L6 triangular prism as templates for shape specific aggregation of polyiodide. Nano Res. 2022, 75, 2655–2660.

    Google Scholar 

  32. Han, Y. F.; Jin, G. X. Half-sandwich iridium- and rhodium-based organometallic architectures: Rational design, synthesis, characterization, and applications. Acc. Chem. Res. 2014, 47, 3571–3579.

    CAS  Google Scholar 

  33. Sun, Y.; Chen, C. Y.; Liu, J. B.; Stang, P. J. Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination. Chem. Soc. Rev. 2020, 49, 3889–3919.

    CAS  Google Scholar 

  34. Xu, L.; Wang, Y. X.; Chen, L. J.; Yang, H. B. Construction of multiferrocenyl metallacycles and metallacages via coordination-driven self-assembly: From structure to functions. Chem. Soc. Rev. 2015, 44, 2148–2167.

    CAS  Google Scholar 

  35. Kudo, K.; Ide, T.; Kishida, N.; Yoshizawa, M. Preparation of a multicarbazole-based nanocapsule capable of largely modulating guest spectroscopic properties in water. Angew. Chem., Int. Ed. 2021, 60, 10552–10556.

    CAS  Google Scholar 

  36. Li, Y. R.; Rajasree, S. S.; Lee, G. Y.; Yu, J. R.; Tang, J. H.; Ni, R. D.; Li, G. G.; Houk, K. N.; Deria, P.; Stang, P. J. Anthracene-triphenylamine-based platinum(II) metallacages as synthetic light-harvesting assembly. J. Am. Chem. Soc. 2021, 143, 2908–2919.

    CAS  Google Scholar 

  37. Zhou, J.; Yu, G. C.; Yang, J.; Shi, B. B.; Ye, B. Y.; Wang, M. B.; Huang, F. H.; Stang, P. J. Polymeric nanoparticles integrated from discrete organoplatinum(II) metallacycle by stepwise post-assembly polymerization for synergistic cancer therapy. Chem. Mater. 2020, 32, 4564–4573.

    CAS  Google Scholar 

  38. Ding, Y.; Tong, Z. R.; Jin, L. L.; Ye, B. L.; Zhou, J.; Sun, Z. Q.; Yang, H.; Hong, L. J.; Huang, F. H.; Wang, W. L. et al. An NIR discrete metallacycle constructed from perylene bisimide and tetraphenylethylene fluorophores for imaging-guided cancer radio-chemotherapy. Adv. Mater. 2022, 34, 2106388.

    CAS  Google Scholar 

  39. Saha, M. L.; Yan, X. Z.; Stang, P. J. Photophysical properties of organoplatinum(II) compounds and derived self-assembled metallacycles and metallacages: Fluorescence and its applications. Acc. Chem. Res. 2016, 49, 2527–2539.

    CAS  Google Scholar 

  40. Ibanez, S.; Poyatos, M.; Peris, E. N-heterocyclic carbenes: A door open to supramolecular organometallic chemistry. Acc. Chem. Res. 2020, 53, 1401–1413.

    CAS  Google Scholar 

  41. Gan, M. M.; Liu, J. Q.; Zhang, L.; Wang, Y. Y.; Hahn, F. E.; Han, Y. F. Preparation and post-assembly modification of metallosupramolecular assemblies from poly(W-heterocyclic carbene) ligands. Chem. Rev. 2018, 118, 9587–9641.

    CAS  Google Scholar 

  42. Li, Y.; Yu, J. G.; Ma, L. L.; Li, M.; An, Y. Y.; Han, Y. F. Strategies for the construction of supramolecular assemblies from poly-NHC ligand precursors. Sci. China Chem. 2021, 64, 701–718.

    CAS  Google Scholar 

  43. Zhang, Z. E.; An, Y. Y.; Zheng, B.; Chang, J. P.; Han, Y. F. Hierarchical self-assembly of crown ether based metal-carbene cages into multiple stimuli-responsive cross-linked supramolecular metallogel. Sci. China Chem. 2021, 64, 1177–1183.

    CAS  Google Scholar 

  44. Ibáñez, S.; Vicent, C.; Peris, E. Clippane: A mechanically interlocked molecule (MIM) based on molecular tweezers. Angew. Chem., Int. Ed. 2022, 61, e202112513.

    Google Scholar 

  45. Nishad, R. C.; Kumar, S.; Rit, A. Self-assembly of a bis-NHC ligand and coinage metal ions: Unprecedented metal-driven chemistry between the tri- and tetranuclear species. Angew. Chem., Int. Ed. 2022, 61, e202206788.

    CAS  Google Scholar 

  46. Zheng, X.; Wang, X. Y.; Qiu, Y. F.; Li, Y. T.; Zhou, C. K.; Sui, Y. X.; Li, Y. Z.; Ma, J.; Wang, X. P. One-electron oxidation of an organic molecule by B(C6F5)3; Isolation and structures of stable non-para-substituted triarylamine cation radical and bis(triarylamine) dication diradicaloid. J. Am. Chem. Soc. 2013, 135, 14912–14915.

    CAS  Google Scholar 

  47. Su, Y. T.; Wang, X. Y.; Zheng, X.; Zhang, Z. C.; Song, Y.; Sui, Y. X.; Li, Y. Z.; Wang, X. P. Tuning ground states of bis(triarylamine) dications: From a closed-shell singlet to a diradicaloid with an excited triplet state. Angew. Chem., Int. Ed. 2014, 53, 2857–2861.

    CAS  Google Scholar 

  48. Abe, M. Diradicals. Chem. Rev. 2013, 113, 7011–7088.

    CAS  Google Scholar 

  49. Yokoyama, Y.; Sakamaki, D.; Ito, A.; Tanaka, K.; Shiro, M. A triphenylamine double-decker: From a delocalized radical cation to a diradical dication with an excited triplet state. Angew. Chem., Int. Ed. 2012, 51, 9403–9406.

    CAS  Google Scholar 

  50. Ito, A.; Ono, Y.; Tanaka, K. The tetraaza[1.1. 1.1]m, p, m, p-cyclophane dication: A triplet diradical having two m-phenylenediamine radical cations linked by twisted benzenes. Angew. Chem., Int. Ed. 2000, 39, 1072–1075.

    CAS  Google Scholar 

  51. Wang, W. Q.; Wang, L.; Chen, S.; Yang, W. B.; Zhang, Z. C.; Wang, X. P. Air-stable diradical dications with ferromagnetic interaction exceeding the thermal energy at room temperature: From a monomer to a dimer. Sci. China Chem. 2018, 61, 300–305.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Fund for Distinguished Young Scholars of China (No. 22025107), the National Youth Top-notch Talent Support Program of China, Xi’an Key Laboratory of Functional Supramolecular Structure and Materials, and the FM&EM International Joint Laboratory of Northwest University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Feng Han.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, GF., Zhang, YZ., Yu, L. et al. Radical organometallic nanocages with redox switchable poly-NHC ligands. Nano Res. 16, 10678–10683 (2023). https://doi.org/10.1007/s12274-023-5690-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5690-2

Keywords

Navigation