Skip to main content
Log in

A novel 3D printed technology to construct a monolithic ultrathin nanosheets Co3O4/SiO2 catalyst for benzene catalytic combustion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, a novel three-dimensional (3D)-OMm-Co3O4/SiO2-0.5AP (OMm = ordered macro–meso porous, AP = aluminum phosphate) monolithic catalyst was for the first time constructed successfully with the hierarchical Co-phyllosilicate ultrathin nanosheets growth on the surface of 3D printed ordered macropore–mesoporous SiO2 support. On the one hand, we discovered that the construction of ordered macropore–mesoporous structures is beneficial to the diffusion and adsorption of reactants, intermediates, and products. On the other hand, the formation of hierarchical Co-phyllosilicate ultrathin nanosheets could provide more active Co&+ species, abundant acid sites, and active oxygen. The above factors are in favor of improving the catalytic performance of benzene oxidation, and then a 3D-OMm-Co3O4/SiO2-0.5AP catalyst exhibited the superior catalytic activity. To explore the effect of catalysts structure and morphology, various Co-based catalysts were also constructed. Simultaneously, the 3D-OMm-Co3O4/SiO2-0.5AP catalyst has excellent catalytic performance, water resistance, and thermal stability in the catalytic combustion of benzene due to the strong interactions between Co&+ species and SiO2 in the phyllosilicate. Therefore, this study proposes a new catalyst synthesis method through 3D printing, and presents considerable prospects for the removal of VOCs from industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wen, M.; Dong, F.; Yao, J. F.; Tang, Z. C.; Zhang, J. Y. Pt nanoparticles confined in the ordered mesoporous CeO2 as a highly efficient catalyst for the elimination of VOCs. J. Catal. 2022, 412, 42–58.

    CAS  Google Scholar 

  2. Chen, J.; Chen, X.; Chen, X.; Xu, W. J.; Xu, Z.; Jia, H. P.; Chen, J. Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs. Appl. Catal. B: Environ. 2018, 224, 825–835.

    CAS  Google Scholar 

  3. Li, L.; Liu, S. Q.; Liu, J. X. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. J. Hazard. Mater. 2011, 192, 683–690.

    CAS  Google Scholar 

  4. Destaillats, H.; Sleiman, M.; Sullivan, D. P.; Jacquiod, C.; Sablayrolles, J.; Molins, L. Key parameters influencing the performance of photocatalytic oxidation (PCO) air purification under realistic indoor conditions. Appl. Catal. B: Environ. 2012, 128, 159–170.

    CAS  Google Scholar 

  5. Parmar, G. R.; Rao, N. N. Emerging control technologies for volatile organic compounds. Crit. Rev. Environ. Sci. Technol. 2008, 39, 41–78.

    Google Scholar 

  6. Luo, Y. J.; Wang, K. C.; Chen, Q. H.; Xu, Y. X.; Xue, H.; Qian, Q. R. Preparation and characterization of electrospun La1−xCexCoOδ: Application to catalytic oxidation of benzene. J. Hazard. Mater. 2015, 296, 17–22.

    CAS  Google Scholar 

  7. Zhang, C. H.; Guo, Y. L.; Guo, Y.; Lu, G. Z.; Boreave, A.; Retailleau, L.; Baylet, A.; Giroir-Fendler, A. LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene. Appl. Catal. B: Environ. 2014, 148-149, 490–498.

    Google Scholar 

  8. Wang, X. Y.; Liu, Y.; Zhang, T. H.; Luo, Y. J.; Lan, Z. X.; Zhang, K.; Zuo, J. C.; Jiang, L. L.; Wang, R. H. Geometrical-site-dependent catalytic activity of ordered mesoporous Co-based spinel for benzene oxidation: In situ DRIFTS study coupled with Raman and XAFS spectroscopy. ACS Catal. 2017, 7, 1626–1636.

    CAS  Google Scholar 

  9. Feng, X. B.; Chen, C. W.; He, C.; Chai, S. N.; Yu, Y. K.; Cheng, J. Non-thermal plasma coupled with MOF-74 derived Mn-Co-Ni-O porous composite oxide for toluene efficient degradation. J. Hazard. Mater. 2020, 383, 121143.

    CAS  Google Scholar 

  10. Solsona, B.; Garcia, T.; Aylón, E.; Dejoz, A. M.; Vázquez, I.; Agouram, S.; Davies, T. E.; Taylor, S. H. Promoting the activity and selectivity of high surface area Ni-Ce-O mixed oxides by gold deposition for VOC catalytic combustion. Chem. Eng. J. 2011, 175, 271–278.

    CAS  Google Scholar 

  11. Wang, C.; Zhang, C. H.; Hua, W. C.; Guo, Y. L.; Lu, G. Z.; Gil, S.; Giroir-Fendler, A. Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts. Chem. Eng. J. 2017, 315, 392–402.

    CAS  Google Scholar 

  12. Wang, Y. F.; Zhang, C. B.; Yu, Y. B.; Yue, R. L.; He, H. Ordered mesoporous and bulk Co3O4 supported Pd catalysts for catalytic oxidation of o-xylene. Catal. Today 2015, 242, 294–299.

    CAS  Google Scholar 

  13. Liu, Y. X.; Dai, H. X.; Deng, J. G.; Xie, S. H.; Yang, H. G.; Tan, W.; Han, W.; Jiang, Y.; Guo, G. S. Mesoporous Co3O4-supported gold nanocatalysts: Highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene. J. Catal. 2014, 309, 408–418.

    CAS  Google Scholar 

  14. Liotta, L. F.; Wu, H. J.; Pantaleo, G.; Venezia, A. M. Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: A review. Catal. Sci. Technol. 2013, 3, 3085–3102.

    CAS  Google Scholar 

  15. Li, J. J.; Xu, X. Y.; Hao, Z. P.; Zhao, W. Mesoporous silica supported cobalt oxide catalysts for catalytic removal of benzene. J. Porous Mater. 2008, 15, 163–169.

    CAS  Google Scholar 

  16. Araújo, R. S.; Azevedo, D. C. S.; Rodríguez-Castellón, E.; Jiménez-López, A.; Cavalcante, C. Jr. Al and Ti-containing mesoporous molecular sieves: Synthesis, characterization and redox activity in the anthracene oxidation. J. Mol. Catal. A: Chem. 2008, 281, 154–163.

    Google Scholar 

  17. Todorova, S.; Pârvulescu, V.; Kadinov, G.; Tenchev, K.; Somacescu, S.; Su, B. L. Metal states in cobalt-and cobalt-vanadium-modified MCM-41 mesoporous silica catalysts and their activity in selective hydrocarbons oxidation. Micropor. Mesopor. Mater. 2008, 113, 22–30.

    CAS  Google Scholar 

  18. Szegedi, Á.; Popova, M.; Minchev, C. Catalytic activity of Co/MCM-41 and Co/SBA-15 materials in toluene oxidation. J. Mater. Sci. 2009, 44, 6710–6716.

    CAS  Google Scholar 

  19. Kim, D. J.; Dunn, B. C.; Cole, P.; Turpin, G.; Ernst, R. D.; Pugmire, R. J.; Kang, M.; Kim, J. M.; Eyring, E. M. Enhancement in the reducibility of cobalt oxides on a mesoporous silica supported cobalt catalyst. Chem. Commun. 2005, 11, 1462–1464.

    Google Scholar 

  20. Katsoulidis, A. P.; Petrakis, D. E.; Armatas, G. S.; Trikalitis, P. N.; Pomonis, P. J. Ordered mesoporous CoOx/MCM-41 materials exhibiting long-range self-organized nanostructured morphology. Micropor. Mesopor. Mater. 2006, 92, 71–80.

    CAS  Google Scholar 

  21. Dong, F.; Han, W. G.; Han, W. L.; Tang, Z. C. Assembling core–shell SiO2@NiaCobOx nanotube decorated by hierarchical NiCo-phyllisilicate ultrathin nanosheets for highly efficient catalytic combustion of VOCs. Appl. Catal. B: Environ. 2022, 315, 121524.

    CAS  Google Scholar 

  22. Xu, C. F.; Chen, G. X.; Zhao, Y.; Liu, P. X.; Duan, X. P.; Gu, L.; Fu, G.; Yuan, Y. Z.; Zheng, N. F. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 2018, 9, 3367.

    Google Scholar 

  23. Kong, X.; Zhu, Y. F.; Zheng, H. Y.; Li, X. Q.; Zhu, Y. L.; Li, Y. W. Ni nanoparticles inlaid nickel phyllosilicate as a metal–acid bifunctional catalyst for low-temperature hydrogenolysis reactions. ACS Catal. 2015, 5, 5914–5920.

    CAS  Google Scholar 

  24. Kim, J. S.; Park, I.; Jeong, E. S.; Jin, K.; Seong, W. M.; Yoon, G.; Kim, H.; Kim, B.; Nam, K. T.; Kang, K. Amorphous cobalt phyllosilicate with layered crystalline motifs as water oxidation catalyst. Adv. Mater. 2017, 29, 1606893.

    Google Scholar 

  25. Wen, M.; Dong, F.; Tang, Z. C.; Zhang, J. Y. In situ confined encapsulation strategy for construction of Co3O4@SiO2 catalyst for the efficient elimination of toluene. Micropor. Mesopor. Mater. 2021, 322, 111156.

    CAS  Google Scholar 

  26. Mitchell, S.; Michels, N. L.; Kunze, K.; Pérez-Ramírez, J. Visualization of hierarchically structured zeolite bodies from macro to nano length scales. Nat. Chem. 2012, 4, 825–831.

    CAS  Google Scholar 

  27. Freiding, J.; Kraushaar-Czarnetzki, B. Novel extruded fixed-bed MTO catalysts with high olefin selectivity and high resistance against coke deactivation. Appl. Catal. A: Gen. 2011, 391, 254–260.

    CAS  Google Scholar 

  28. Williams, J. L. Monolith structures, materials, properties and uses. Catal. Today 2001, 69, 3–9.

    CAS  Google Scholar 

  29. Díaz-Marta, A. S.; Tubío, C. R.; Carbajales, C.; Fernández, C.; Escalante, L.; Sotelo, E.; Guitián, F.; Barrio, V. L.; Gil, A.; Coelho, A. Three-dimensional printing in catalysis: Combining 3D heterogeneous copper and palladium catalysts for multicatalytic multicomponent reactions. ACS Catal. 2018, 8, 392–404.

    Google Scholar 

  30. Crawley, M. L.; Trost, B. M. Applications of Transition Metal Catalysis in Drug Discovery and Development: An Industrial Perspective; John Wiley & Sons, Inc.: Hoboken, 2012.

    Google Scholar 

  31. Ciriminna, R.; Carà, P. D.; Sciortino, M.; Pagliaro, M. Catalysis with doped sol-gel silicates. Adv. Synth. Catal. 2011, 353, 677–687.

    CAS  Google Scholar 

  32. Xu, X.; Zhang, M. X.; Jiang, P.; Liu, D. S.; Wang, Y. X.; Xu, X.; Ji, Z. Y.; Jia, X.; Wang, H. Z.; Wang, X. L. Direct ink writing of Pd-decorated Al2O3 ceramic based catalytic reduction continuous flow reactor. Ceram. Int. 2022, 48, 10843–10851.

    CAS  Google Scholar 

  33. Muth, J. T.; Dixon, P. G.; Woish, L.; Gibson, L. J.; Lewis, J. A. Architected cellular ceramics with tailored stiffness via direct foam writing. Proc. Natl. Acad. Sci. USA 2017, 114, 1832–1837.

    CAS  Google Scholar 

  34. Liu, D. S.; Jiang, P.; Li, X. C.; Liu, J. X.; Zhou, L. C.; Wang, X. L.; Zhou, F. 3D printing of metal–organic frameworks decorated hierarchical porous ceramics for high-efficiency catalytic degradation. Chem. Eng. J. 2020, 397, 125392.

    CAS  Google Scholar 

  35. Liu, M.; Sun, J. R.; Chen, Q. F. Influences of heating temperature on mechanical properties of polydimethylsiloxane. Sens. Actuators A: Phys. 2009, 151, 42–45.

    CAS  Google Scholar 

  36. Quintanilla, A.; Casas, J. A.; Miranzo, P.; Osendi, M. I.; Belmonte, M. 3D-printed Fe-doped silicon carbide monolithic catalysts for wet peroxide oxidation processes. Appl. Catal. B: Environ. 2018, 235, 246–255.

    CAS  Google Scholar 

  37. Mu, Z.; Li, J. J.; Tian, H.; Hao, Z. P.; Qiao, S. Z. Synthesis of mesoporous Co/Ce-SBA-15 materials and their catalytic performance in the catalytic oxidation of benzene. Mater. Res. Bull. 2008, 43, 2599–2606.

    CAS  Google Scholar 

  38. Wang, X. Y.; Zuo, J. C.; Luo, Y. J.; Jiang, L. L. New route to CeO2/LaCoO3 with high oxygen mobility for total benzene oxidation. Appl. Surf. Sci. 2017, 396, 95–101.

    CAS  Google Scholar 

  39. Zuo, S. F.; Liu, F. J.; Tong, J.; Qi, C. Z. Complete oxidation of benzene with cobalt oxide and ceria using the mesoporous support SBA-16. Appl. Catal. A: Gen. 2013, 467, 1–6.

    CAS  Google Scholar 

  40. Han, D. W.; Xiao, M. L.; Wei, Y. C.; Yang, X. Q.; Guo, Y. C.; Ma, L. J.; Yu, X. L.; Ge, M. F. Enhanced sulfur resistance by constructing MnOx-Co3O4 interface on Ni foam in the removal of benzene. Environ. Sci.: Nano 2023, 10, 284–294.

    CAS  Google Scholar 

  41. Xiang, Y.; Zhu, Y.; Lu, J.; Zhu, C. Z.; Zhu, M. Y.; Xie, Q. Q.; Chen, T. H. Co3O4/α-Fe2O3 catalyzed oxidative degradation of gaseous benzene: Preparation, characterization and its catalytic properties. Solid State Sci. 2019, 93, 79–86.

    CAS  Google Scholar 

  42. Yao, J. F.; Dong, F.; Xu, X.; Wen, M.; Ji, Z. Y.; Feng, H.; Wang, X. L.; Tang, Z. C. Rational design and construction of monolithic ordered mesoporous Co3O4@SiO2 catalyst by a novel 3D printed technology for catalytic oxidation of toluene. ACS Appl. Mater. Interfaces 2022, 14, 22170–22185.

    CAS  Google Scholar 

  43. Zhang, L.; Yang, J. W.; Wang, A. Q.; Chai, S. H.; Guan, J.; Nie, L. F.; Fan, G. J.; Han, N.; Chen, Y. F. High performance ozone decomposition spinel (Mn,Co)3O4 catalyst accelerating the rate-determining step. Appl. Catal. B: Environ. 2022, 303, 120927.

    CAS  Google Scholar 

  44. Scott, S. L.; Gunnoe, T. B.; Fornasiero, P.; Crudden, C. M. To err is human; to reproduce takes time. ACS Catal. 2022, 12, 3644–3650.

    CAS  Google Scholar 

  45. Lefevere, J.; Protasova, L.; Mullens, S.; Meynen, V. 3D-printing of hierarchical porous ZSM-5: The importance of the binder system. Mater. Des. 2017, 134, 331–341.

    CAS  Google Scholar 

  46. Dong, F.; Han, W. G.; Guo, Y.; Han, W. L.; Tang, Z. C. CeCoOx-MNS catalyst derived from three-dimensional mesh nanosheet Co-based metal-organic frameworks for highly efficient catalytic combustion of VOCs. Chem. Eng. J. 2021, 405, 126948.

    CAS  Google Scholar 

  47. Wang, H.; Chen, C. L.; Zhang, Y. X.; Peng, L. X.; Ma, S.; Yang, T.; Guo, H. H.; Zhang, Z. D.; Su, D. S.; Zhang, J. In situ oxidation of carbon-encapsulated cobalt nanocapsules creates highly active cobalt oxide catalysts for hydrocarbon combustion. Nat. Commun. 2015, 6, 7181.

    CAS  Google Scholar 

  48. Sun, S. J.; Gao, Q. M.; Wang, H. L.; Zhu, J. K.; Guo, H. L. Influence of textural parameters on the catalytic behavior for CO oxidation over ordered mesoporous Co3O4. Appl. Catal. B: Environ. 2010, 97, 284–291.

    CAS  Google Scholar 

  49. Díaz-Marta, A. S.; Yáñez, S.; Tubio, C. R.; Barrio, V. L.; Piñeiro, Y.; Pedrido, R.; Rivas, J.; Amorín, M.; Guitián, F.; Coelho, A. Multicatalysis combining 3D-printed devices and magnetic nanoparticles in one-pot reactions: Steps forward in compartmentation and recyclability of catalysts. ACS Appl. Mater. Interfaces 2019, 11, 25283–25294.

    Google Scholar 

  50. Yang, Q. X.; Lu, R.; Ren, S. S.; Zhou, H. M.; Wu, Q. X.; Zhen, Y. Y.; Chen, Z. J.; Fang, S. M. Magnetic beads embedded in poly (sodium-p-styrenesulfonate) and ZIF-67: Removal of nitrophenol from water. J. Solid State Chem. 2018, 265, 200–207.

    CAS  Google Scholar 

  51. Peng, M. W.; Shi, D. L.; Sun, Y. H.; Cheng, J.; Zhao, B.; Xie, Y. M.; Zhang, J. C.; Guo, W.; Jia, Z.; Liang, Z. Q. et al. 3D printed mechanically robust graphene/CNT electrodes for highly efficient overall water splitting. Adv. Mater. 2020, 32, 1908201.

    CAS  Google Scholar 

  52. Ghasemzadeh, M. A.; Mirhosseini-Eshkevari, B.; Abdollahi-Basir, M. H. Rapid and efficient one-pot synthesis of 3,4-dihydroquinoxalin-2-amine derivatives catalyzed by Co3O4@SiO2 core–shell nanoparticles under ultrasound irradiation. Comb. Chem. High Throughput Screen. 2016, 19, 592–601.

    CAS  Google Scholar 

  53. Kucharczyk, S.; Zajac, M.; Stabler, C.; Thomsen, R. M.; Haha, M. B.; Skibsted, J.; Deja, J. Structure and reactivity of synthetic CaO-Al2O3-SiO2 glasses. Cem. Concr. Res. 2019, 120, 77–91.

    CAS  Google Scholar 

  54. Gu, F.; Li, C. Z.; Hu, Y. J.; Zhang, L. Synthesis and optical characterization of Co3O4 nanocrystals. J. Cryst. Growth 2007, 304, 369–373.

    CAS  Google Scholar 

  55. Mamontov, E.; Egami, T.; Brezny, R.; Koranne, M.; Tyagi, S. Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J. Phys. Chem. B 2000, 104, 11110–11116.

    CAS  Google Scholar 

  56. Cheng, Q. P.; Tian, Y.; Lyu, S. S.; Zhao, N.; Ma, K.; Ding, T.; Jiang, Z.; Wang, L. H.; Zhang, J.; Zheng, L. R. et al. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nat. Commun. 2018, 9, 3250.

    Google Scholar 

  57. Ward, M. R.; Boyes, E. D.; Gai, P. L. In situ aberration-corrected environmental TEM: Reduction of model Co3O4 in H2 at the atomic level. ChemCatChem 2013, 5, 2655–2661.

    CAS  Google Scholar 

  58. Song, W. Q.; Poyraz, A. S.; Meng, Y. T.; Ren, Z.; Chen, S. Y.; Suib, S. L. Mesoporous Co3O4 with controlled porosity: Inverse micelle synthesis and high-performance catalytic CO oxidation at −60 °C. Chem. Mater. 2014, 26, 4629–4639.

    CAS  Google Scholar 

  59. Subramanian, V.; Cheng, K.; Lancelot, C.; Heyte, S.; Paul, S.; Moldovan, S.; Ersen, O.; Marinova, M.; Ordomsky, V. V.; Khodakov, A. Y. Nanoreactors: An efficient tool to control the chain–length distribution in Fischer–Tropsch synthesis. ACS Catal. 2016, 6, 1785–1792.

    CAS  Google Scholar 

  60. Sun, X. H.; Suarez, A. I. O.; Meijerink, M.; Van Deelen, T.; Ould-Chikh, S.; Zečević, J.; De Jong, K. P.; Kapteijn, F.; Gascon, J. Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework. Nat. Commun. 2017, 8, 1680.

    Google Scholar 

  61. Yan, N.; Chen, Q. W.; Wang, F.; Wang, Y.; Zhong, H.; Hu, L. High catalytic activity for CO oxidation of Co3O4 nanoparticles in SiO2 nanocapsules. J. Mater. Chem. A 2013, 1, 637–643.

    CAS  Google Scholar 

  62. Li, B. F.; Wei, F.; Su, B.; Guo, Z.; Ding, Z. X.; Yang, M. Q.; Wang, S. B. Mesoporous cobalt tungstate nanoparticles for efficient and stable visible-light-driven photocatalytic CO2 reduction. Mater. Today Energy 2022, 24, 100943.

    CAS  Google Scholar 

  63. Li, Q.; Odoom-Wubah, T.; Zhou, Y. P.; Mulka, R.; Zheng, Y. M.; Huang, J. L.; Sun, D. H.; Li, Q. B. Coral-like CoMnOx as a highly active catalyst for benzene catalytic oxidation. Ind. Eng. Chem. Res. 2019, 58, 2882–2890.

    CAS  Google Scholar 

  64. Mo, S. P.; Zhang, Q.; Li, J. Q.; Sun, Y. H.; Ren, Q. M.; Zou, S. B.; Zhang, Q.; Lu, J. H.; Fu, M. L.; Mo, D. Q. et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: Oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS. Appl. Catal. B: Environ. 2020, 264, 118464.

    CAS  Google Scholar 

  65. Hu, Z.; Qiu, S.; You, Y.; Guo, Y.; Guo, Y. L.; Wang, L.; Zhan, W. C.; Lu, G. Z. Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane. Appl. Catal. B: Environ. 2018, 225, 110–120.

    CAS  Google Scholar 

  66. Ma, Y.; Wang, L.; Ma, J. Z.; Wang, H. H.; Zhang, C. B.; Deng, H.; He, H. Investigation into the enhanced catalytic oxidation of o-xylene over MOF-derived Co3O4 with different shapes: The role of surface twofold-coordinate lattice oxygen (O2f). ACS Catal. 2021, 11, 6614–6625.

    CAS  Google Scholar 

  67. Soghrati, E.; Ong, T. K. C.; Poh, C. K.; Kawi, S.; Borgna, A. Zeolite-supported nickel phyllosilicate catalyst for C-O hydrogenolysis of cyclic ethers and polyols. Appl. Catal. B: Environ. 2018, 235, 130–142.

    CAS  Google Scholar 

  68. Fang, J. X.; Huang, Z. W.; Wang, L. P.; Guo, S. F.; Li, M. X.; Liu, Y. C.; Chen, J. M.; Wu, X. M.; Shen, H. Z.; Zhao, H. W. et al. Activation of oxygen on the surface of the Co3O4 catalyst by singleatom Ag toward efficient catalytic benzene combustion. J. Phys. Chem. C 2022, 126, 5873–5884.

    CAS  Google Scholar 

  69. Zhao, X. T.; Xu, D. J.; Wang, Y. N.; Zheng, Z. W.; Li, K.; Zhang, Y. R.; Zhan, R.; Lin, H. Electric field assisted benzene oxidation over Pt-Ce-Zr nano-catalysts at low temperature. J. Hazard. Mater. 2021, 407, 124349.

    CAS  Google Scholar 

  70. Yang, K.; Liu, Y. X.; Deng, J. G.; Zhao, X. T.; Yang, J.; Han, Z.; Hou, Z. Q.; Dai, H. X. Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: Highly active catalysts for benzene combustion. Appl. Catal. B: Environ. 2019, 244, 650–659.

    CAS  Google Scholar 

  71. Hou, J. C.; Hu, J. L.; Chang, L. P.; Wang, J. C.; Zeng, Z. Q.; Wu, D. X.; Cui, X. M.; Bao, W. R.; Yao, J. X. Synergistic effects between highly dispersed CuOx and the surface Cu-[Ox]-Ce structure on the catalysis of benzene combustion. J. Catal. 2022, 408, 9–23.

    CAS  Google Scholar 

  72. Lichtenberger, J.; Amiridis, M. D. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. J. Catal. 2004, 223, 296–308.

    CAS  Google Scholar 

  73. Li, L.; Yang, Q. L.; Wang, D.; Peng, Y.; Yan, J. L.; Li, J. H.; Crittenden, J. Facile synthesis λ-MnO2 spinel for highly effective catalytic oxidation of benzene. Chem. Eng. J. 2021, 421, 127828.

    CAS  Google Scholar 

  74. Li, J. J.; Yu, E. Q.; Cai, S. C.; Chen, X.; Chen, J.; Jia, H. P.; Xu, Y. J. Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photothermal catalytic decomposition of volatile organic compounds under IR light. Appl. Catal. B: Environ. 2019, 240, 141–152.

    CAS  Google Scholar 

  75. Xue, L.; Zhang, C. B.; He, H.; Teraoka, Y. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl. Catal. B: Environ. 2007, 75, 167–174.

    CAS  Google Scholar 

  76. Liu, X. L.; Zeng, J. L.; Shi, W. B.; Wang, J.; Zhu, T. Y.; Chen, Y. F. Catalytic oxidation of benzene over ruthenium-cobalt bimetallic catalysts and study of its mechanism. Catal. Sci. Technol. 2017, 7, 213–221.

    CAS  Google Scholar 

  77. Kang, S. Y.; Wang, M.; Zhu, N.; Wang, C. Y.; Deng, H.; He, H. Significant enhancement in water resistance of Pd/Al2O3 catalyst for benzene oxidation by Na addition. Chin. Chem. Lett. 2019, 30, 1450–1454.

    CAS  Google Scholar 

  78. Odoom-Wubah, T.; Li, Q.; Adilov, I.; Huang, J. L.; Li, Q. B. Towards efficient Pd/Mn3O4 catalyst with enhanced acidic sites and low temperature reducibility for benzene abatement. Mol. Catal. 2019, 477, 110558.

    CAS  Google Scholar 

  79. Zhong, J. P.; Zeng, Y. K.; Zhang, M. Y.; Feng, W. H.; Xiao, D. R.; Wu, J. L.; Chen, P. R.; Fu, M. L.; Ye, D. Q. Toluene oxidation process and proper mechanism over Co3O4 nanotubes: Investigation through in-situ DRIFTS combined with PTR-TOF-MS and quasi in-situ XPS. Chem. Eng. J. 2020, 397, 125375.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the LICP Cooperation Foundation for Young Scholars (No. HZJJ21-02), the National Natural Science Foundation of China (Nos. 52070182 and 51908535), the DNL Cooperation Found, Chinese Academy of Sciences (No. DNL202004), Province Natural Science Foundation of GanSu (Nos. 20JR10RA053 and 20JR10RA046), and Major Program of the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (No. ZYFZFX-10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Dong, Zhicheng Tang or Jiyi Zhang.

Electronic Supplementary Material

12274_2023_5631_MOESM1_ESM.pdf

A novel 3D printed technology to construct a monolithic ultrathin nanosheets Co3O4/SiO2 catalyst for benzene catalytic combustion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, Y., Dong, F., Xu, X. et al. A novel 3D printed technology to construct a monolithic ultrathin nanosheets Co3O4/SiO2 catalyst for benzene catalytic combustion. Nano Res. 16, 12173–12185 (2023). https://doi.org/10.1007/s12274-023-5631-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5631-0

Keywords

Navigation