Skip to main content
Log in

Oxygen-contained amorphous MoSx cocatalyst by one-step photodeposition to enhance H-adsorption affinity for efficient photocatalytic H2 generation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Traditional bulk MoS2 as an effective H2-evolution cocatalyst is mainly subjected to the weak hydrogen-adsorption ability of high-porpotion saturated S, resulting in a slow interfacial H2-evolution reaction. In this paper, an efficient strategy for enhancing hydrogen adsorption of saturated S by manipulating electron density through O atoms is proposed to boost photocatalytic performance of CdS. Simultaneously, amorphization of MoS2 can further increase the unsaturated active S sites. Herein, oxygen-contained amorphous MoSx (a-MoOSx) nanoparticles (10–30 nm) were tightly loaded on the CdS surface through a mild photoinduced deposition method by using (NH4)2[MoO(S4)2] solution as the precursor at room temperature. The photocatalytic H2-evolution result showed that the a-MoOSx/CdS performed the superior H2-production activity (382 µmol·h1, apparent quantum efficiencies (AQE) = 11.83%) with a lot of visual H2 bubbles, which was 54.6, 2.5, and 5.1 times as high as that of CdS, MoSx/CdS, and annealed a-MoOSx/CdS, respectively. Characterizations and density functional theory (DFT) calculations revealed the mechanism of improved H2-evolution activity is that the O heteroatom in amorphous MoOSx can enhance the atomic H-adsorption ability by manipulating the electron density to form electron-deficient S(2−δ) sites. This study provides a new idea to improve the efficiency and number of H2-evolution active sites for developing efficient cocatalysts in the field of photocatalytic hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y.; Gong, F.; Zhou, Q.; Feng, X. H.; Fan, J. J.; Xiang, Q. J. Crystalline isotype heptazine-/triazine-based carbon nitride heterojunctions for an improved hydrogen evolution. Appl. Catal. B Environ. 2020, 268, 118381.

    CAS  Google Scholar 

  2. Luo, J. H.; Lin, Z. X.; Zhao, Y.; Jiang, S. J.; Song, S. Q. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle. Chin. J. Catal. 2020, 41, 122–130.

    CAS  Google Scholar 

  3. Wang, P.; Li, H. T.; Cao, Y. J.; Yu, H. G. Carboxyl-functionalized graphene for highly efficient H2-evolution activity of TiO2 photocatalyst. Acta Phys. Chim. Sin. 2021, 37, 2008047.

    Google Scholar 

  4. Li, M. X.; Guan, R. Q.; Li, J. X.; Zhao, Z.; Zhang, J. K.; Dong, C. C.; Qi, Y. F.; Zhai, H. J. Performance and mechanism research of Au-HSTiO2 on photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 1437–1443.

    CAS  Google Scholar 

  5. Liu, X.; Zhao, Y. X.; Yang, X. F.; Liu, Q. Q.; Yu, X. H.; Li, Y. Y.; Tang, H.; Zhang, T. R. Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance. Appl. Catal. B Environ. 2020, 275, 119144.

    CAS  Google Scholar 

  6. Liu, J. F.; Wang, P.; Fan, J. J.; Yu, H. G.; Yu, J. G. Hetero-phase MoC-Mo2C nanoparticles for enhanced photocatalytic H2-production activity of TiO2. Nano Res. 2021, 14, 1095–1102.

    CAS  Google Scholar 

  7. Wang, M.; Cheng, J. J.; Wang, X. F.; Hong, X. K.; Fan, J. J.; Yu, H. G. Sulfur-mediated photodeposition synthesis of NiS cocatalyst for boosting H2-evolution performance of g-C3N4 photocatalyst. Chin. J. Catal. 2021, 42, 37–45.

    Google Scholar 

  8. Gao, D. D.; Wu, X. H.; Wang, P.; Yu, H. G.; Zhu, B. C.; Fan, J. J.; Yu, J. G. Selenium-enriched amorphous NiSe1+x nanoclusters as a highly efficient cocatalyst for photocatalytic H2 evolution. Chem. Eng. J. 2021, 408, 127230.

    CAS  Google Scholar 

  9. Li, Y. F.; Zhang, M.; Zhou, L.; Yang, S. J.; Wu, Z. S.; Ma, Y. H. Recent advances in surface-modified g-C3N4-based photocatalysts for H2 production and CO2 reduction. Acta Phys. Chim. Sin. 2021, 37, 2009030.

    Google Scholar 

  10. Ma, X. W.; Lin, H. F.; Li, Y. Y.; Wang, L.; Pu, X. P.; Yi, X. J. Dramatically enhanced visible-light-responsive H2 evolution of Cd1−xZnxS via the synergistic effect of Ni2P and 1T/2H MoS2 cocatalysts. Chin. J. Struct. Chem. 2021, 40, 7–22.

    CAS  Google Scholar 

  11. Eder, M.; Courtois, C.; Petzoldt, P.; Mackewicz, S.; Tschurl, M.; Heiz, U. Size and coverage effects of Ni and Pt co-catalysts in the photocatalytic hydrogen evolution from methanol on TiO2 (110). ACS Catal. 2022, 12, 9579–9588.

    CAS  Google Scholar 

  12. Li, K. N.; Zhang, S. S.; Li, Y. H.; Fan, J. J.; Lv, K. L. MXenes as noble-metal-alternative co-catalysts in photocatalysis. Chin. J. Catal. 2021, 42, 3–14.

    CAS  Google Scholar 

  13. Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

    CAS  Google Scholar 

  14. Hu, J.; Huang, B. L.; Zhang, C. X.; Wang, Z. L.; An, Y. M.; Zhou, D.; Lin, H.; Leung, M. K. H.; Yang, S. H. Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction. Energy Environ. Sci. 2017, 10, 593–603.

    CAS  Google Scholar 

  15. Yu, X. P.; Yang, C.; Song, P.; Peng, J. Self-assembly of Au/MoS2 quantum dots core-satellite hybrid as efficient electrocatalyst for hydrogen production. Tungsten 2020, 2, 194–202.

    Google Scholar 

  16. Xu, J. C.; Gao, D. D.; Yu, H. G.; Wang, P.; Zhu, B. C.; Wang, L. X.; Fan, J. J. Palladium-copper nanodot as novel H2-evolution cocatalyst: Optimizing interfacial hydrogen desorption for highly efficient photocatalytic activity. Chin. J. Catal. 2022, 43, 215–225.

    CAS  Google Scholar 

  17. Shao, M. M.; Shao, Y. F.; Ding, S. J.; Tong, R.; Zhong, X. W.; Yao, L. M.; Ip, W. F.; Xu, B. M.; Shi, X. Q.; Sun, Y. Y. et al. Carbonized MoS2: Super-active co-catalyst for highly efficient water splitting on CdS. ACS Sustainable Chem. Eng. 2019, 7, 4220–4229.

    CAS  Google Scholar 

  18. Gao, D. D.; Xu, J. C.; Wang, L. X.; Zhu, B. C.; Yu, H. G.; Yu, J. G. Optimizing atomic hydrogen desorption of sulfur-rich NiS1+x cocatalyst for boosting photocatalytic H2 evolution. Adv. Mater. 2022, 34, 2108475.

    CAS  Google Scholar 

  19. Liu, M. M.; Zhang, C. Y.; Han, A. L.; Wang, L.; Sun, Y. J.; Zhu, C. N.; Li, R.; Ye, S. Modulation of morphology and electronic structure on MoS2-based electrocatalysts for water splitting. Nano Res. 2022, 15, 6862–6887.

    CAS  Google Scholar 

  20. Cao, Y. Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts. ACS Nano 2021, 15, 11014–11039.

    CAS  Google Scholar 

  21. Zhang, R. H.; Zhang, M. R.; Yang, H.; Li, G.; Xing, S. M.; Li, M. Y.; Xu, Y. L.; Zhang, Q. Y.; Hu, S.; Liao, H. G. et al. Creating fluorine-doped MoS2 edge electrodes with enhanced hydrogen evolution activity. Small Methods 2021, 5, 2100612.

    CAS  Google Scholar 

  22. Zhang, X.; Zhou, F.; Zhang, S.; Liang, Y. Y.; Wang, R. H. Engineering MoS2 basal planes for hydrogen evolution via synergistic ruthenium doping and nanocarbon hybridization. Adv. Sci. 2019, 6, 1900090.

    Google Scholar 

  23. Deng, Y. Q.; Liu, Z.; Wang, A. Z.; Sun, D. H.; Chen, Y. K.; Yang, L. J.; Pang, J. B.; Li, H.; Li, H. D.; Liu, H. et al. Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy 2019, 62, 338–347.

    CAS  Google Scholar 

  24. Li, B. L.; Gong, C. B.; Shen, W.; Peng, J. D.; Zou, H. L.; Luo, H. Q.; Li, N. B. Engineering metallic MoS2 monolayers with responsive hydrogen evolution electrocatalytic activities for enzymatic reaction monitoring. J. Mater. Chem. A 2021, 9, 11056–11063.

    CAS  Google Scholar 

  25. Liu, J. P.; Liu, H. B.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. High-yield exfoliation of MoS2 (WS2) monolayers towards efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 431, 133286.

    CAS  Google Scholar 

  26. Zhang, L. J.; Jin, Z. L.; Tsubaki, N. Activating and optimizing the MoS2@MoO3 S-scheme heterojunction catalyst through interface engineering to form a sulfur-rich surface for photocatalyst hydrogen evolution. Chem. Eng. J. 2022, 438, 133286.

    Google Scholar 

  27. Wang, W. C.; Zhu, S.; Cao, Y. N.; Tao, Y.; Li, X.; Pan, D. L.; Lee Phillips, D.; Zhang, D. Q.; Chen, M.; Li, G. S. et al. Edge-enriched ultrathin MoS2 embedded yolk—shell TiO2 with boosted charge transfer for superior photocatalytic H2 evolution. Adv. Funct. Mater. 2019, 29, 1901958.

    Google Scholar 

  28. Yin, L. S.; Hai, X.; Chang, K.; Ichihara, F.; Ye, J. H. Synergetic exfoliation and lateral size engineering of MoS2 for enhanced photocatalytic hydrogen generation. Small 2018, 14, 1704153.

    Google Scholar 

  29. Lin, Z. P.; Wang, Z. P.; Shen, S. J.; Chen, Y. C.; Du, Z. X.; Tao, W. Y.; Xu, A. J.; Ye, X. F.; Zhong, W. W.; Feng, S. S. One-step method to achieve multiple decorations on lamellar MoS2 to synergistically enhance the electrocatalytic HER performance. J. Alloys Compd. 2020, 834, 155217.

    CAS  Google Scholar 

  30. Zhang, L. J.; Wu, Y. L.; Li, J. K.; Jin, Z. L.; Li, Y. J.; Tsubaki, N. Amorphous/crystalline heterojunction interface driving the spatial separation of charge carriers for efficient photocatalytic hydrogen evolution. Mater. Today Phys. 2022, 27, 100767.

    CAS  Google Scholar 

  31. Dinda, D.; Ahmed, E.; Mandal, S.; Mondal, B.; Saha, S. K. Amorphous molybdenum sulfide quantum dots: An efficient hydrogen evolution electrocatalyst in neutral medium. J. Mater. Chem. A 2016, 4, 15486–15493.

    CAS  Google Scholar 

  32. Vrubel, H.; Merki, D.; Hu, X. L. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 2012, 5, 6136–6144.

    CAS  Google Scholar 

  33. Zhong, W.; Wu, X. H.; Liu, Y. P.; Wang, X. F.; Fan, J. J.; Yu, H. G. Simultaneous realization of sulfur-rich surface and amorphous nanocluster of NiS1+x cocatalyst for efficient photocatalytic H2 evolution. Appl. Catal. B Environ. 2021, 280, 119455.

    CAS  Google Scholar 

  34. Dong, L.; Wang, P.; Yu, H. G. EDTA-assisted synthesis of amorphous BiSx nanodots for improving photocatalytic hydrogen-evolution rate of TiO2. J. Alloys Compd. 2021, 887, 161425.

    CAS  Google Scholar 

  35. Gao, D. D.; Zhao, B. B.; Chen, F.; Yu, H. G.; Fan, J. J.; Yu, J. G. Selenium-rich configuration and amorphization for synergistically maximizing the active-center amount of CoSe1+x nanodots toward efficient photocatalytic H2 evolution. ACS Sustainable Chem. Eng. 2021, 9, 8653–8662.

    CAS  Google Scholar 

  36. Gao, D. D.; Zhong, W.; Wang, X. F.; Chen, F.; Yu, H. G. Increasing unsaturated Se number and facilitating atomic hydrogen adsorption of WSe2+x nanodots for improving photocatalytic H2 production of TiO2. J. Mater. Chem. A 2022, 10, 7989–7998.

    CAS  Google Scholar 

  37. Garrett, B. R.; Click, K. A.; Durr, C. B.; Hadad, C. M.; Wu, Y. Y. [MoO(S2)2L]1− (L = picolinate or pyrimidine-2-carboxylate) complexes as MoSx-inspired electrocatalysts for hydrogen production in aqueous solution. J. Am. Chem. Soc. 2016, 138, 13726–13731.

    CAS  Google Scholar 

  38. McDonald, J. W.; Friesen, G. D.; Rosenhein, L. D.; Newton, W. E. Syntheses and characterization of ammonium and tetraalkylammonium thiomolybdates and thiotungstates. Inorg. Chim. Acta 1983, 72, 205–210.

    CAS  Google Scholar 

  39. Hadjikyriacou, A. I.; Coucouvanis, D. Synthesis, structural characterization, and properties of the [Mo2O2S9]2− thio anion and the [Mo4O4S18]2−, [Mo2O2S8(SCH3)], and [Mo2O2S8Cl] derivatives. Inorg. Chem. 1989, 28, 2169–2177.

    CAS  Google Scholar 

  40. Lee, C. H.; Lee, S.; Kang, G. S.; Lee, Y. K.; Park, G. G.; Lee, D. C.; Joh, H. I. Insight into the superior activity of bridging sulfur-rich amorphous molybdenum sulfide for electrochemical hydrogen evolution reaction. Appl. Catal. B Environ. 2019, 258, 117995.

    CAS  Google Scholar 

  41. Duong, T. M.; Nguyen, P. D.; Nguyen, A. D.; Le, L. T.; Nguyen, L. T.; Pham, H. V.; Tran, P. D. Insights into the electrochemical polymerization of [Mo3S13]2− generating amorphous molybdenum sulfide. Chem.—Eur. J. 2019, 25, 13676–13682.

    CAS  Google Scholar 

  42. Chen, Y. X.; Zhong, W.; Chen, F.; Wang, P.; Fan, J. J.; Yu, H. G. Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance. J. Mater. Sci. Technol. 2022, 121, 19–27.

    CAS  Google Scholar 

  43. Shang, L.; Tong, B.; Yu, H. J.; Waterhouse, G.; Zhou, C.; Zhao, Y. F.; Tahir, M.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1501241.

    Google Scholar 

  44. Mitchell, P. C. H. Oxo-species of molybdenum-(V) and -(VI). Quart. Rev. Chem. Soc. 1966, 20, 103–118.

    CAS  Google Scholar 

  45. Kokliukhin, A.; Nikulshina, M.; Mozhaev, A.; Lancelot, C.; Blanchard, P.; Mentré, O.; Marinova, M.; Lamonier, C.; Nikulshin, P. The effect of the Mo/W ratio on the catalytic properties of alumina supported hydrotreating catalysts prepared from mixed SiMo6W6 and SiMo9W3 heteropolyacids. Catal. Today 2021, 377, 100–113.

    CAS  Google Scholar 

  46. Gao, D. D.; Xu, J. C.; Chen, F.; Wang, P.; Yu, H. G. Unsaturated selenium-enriched MoSe2+x amorphous nanoclusters: One-step photoinduced co-reduction route and its boosted photocatalytic H2-evolution activity for TiO2. Appl. Catal. B Environ. 2022, 305, 121053.

    CAS  Google Scholar 

  47. Jin, B. W.; Zhou, X. M.; Huang, L.; Licklederer, M.; Yang, M.; Schmuki, P. Aligned MoOx/MoS2 core—shell nanotubular structures with a high density of reactive sites based on self-ordered anodic molybdenum oxide nanotubes. Angew. Chem., Int. Ed. 2016, 55, 12252–12256.

    CAS  Google Scholar 

  48. Xu, J. C.; Zhong, W.; Gao, D. D.; Wang, X. F.; Wang, P.; Yu, H. G. Phosphorus-enriched platinum diphosphide nanodots as a highly efficient cocatalyst for photocatalytic H2 evolution of CdS. Chem. Eng. J. 2022, 439, 135758.

    CAS  Google Scholar 

  49. Li, F.; Cheng, L.; Fan, J. J.; Xiang, Q. J. Steering the behavior of photogenerated carriers in semiconductor photocatalysts: A new insight and perspective. J. Mater. Chem. A 2021, 9, 23765–23782.

    CAS  Google Scholar 

  50. Zhang, S. W.; Yang, H. C.; Gao, H. H.; Cao, R. Y.; Huang, J. Z.; Xu, X. J. One-pot synthesis of CdS irregular nanospheres hybridized with oxygen-incorporated defect-rich MoS2 ultrathin nanosheets for efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2017, 9, 23635–23646.

    CAS  Google Scholar 

  51. Gao, D. D.; Zhong, W.; Liu, Y. P.; Yu, H. G.; Fan, J. J. Synergism of tellurium-rich structure and amorphization of NiTe1+x nanodots for efficient photocatalytic H2-evolution of TiO2. Appl. Catal. B Environ. 2021, 290, 120057.

    CAS  Google Scholar 

  52. Zhai, Y. Y.; Ren, X. R.; Yan, J. Q.; Liu, S. Z. High density and unit activity integrated in amorphous catalysts for electrochemical water splitting. Small Struct. 2021, 2, 2000096.

    CAS  Google Scholar 

  53. Gao, D. D.; Long, H. Y.; Wang, X. F.; Yu, J. G.; Yu, H. G. Tailoring antibonding-orbital occupancy state of selenium in Se-enriched ReSe2+x cocatalyst for exceptional H2 evolution of TiO2 photocatalyst. Adv. Funct. Mater. 2023, 33, 2209994.

    CAS  Google Scholar 

  54. Guo, L.; Li, R.; Jiang, J. W.; Fan, X. P.; Zou, J. J.; Mi, W. B. Role of spin-resolved anti-bonding states filling for enhanced HER performance in 3d transition metals doped monolayer WSe2. Appl. Surf. Sci. 2022, 599, 153979.

    CAS  Google Scholar 

  55. Kim, M.; Park, G. H.; Seo, S.; Bui, V. Q.; Cho, Y.; Hong, Y.; Kawazoe, Y.; Lee, H. Uncovering the role of countercations in ligand exchange of WSe2: Tuning the d-band center toward improved hydrogen desorption. ACS Appl. Mater. Interfaces 2021, 13, 11403–11413.

    CAS  Google Scholar 

  56. Wang, T. T.; Wang, P. Y.; Pang, Y. J.; Wu, Y. T.; Yang, J.; Chen, H.; Gao, X. R.; Mu, S. C.; Kou, Z. K. Vertically mounting molybdenum disulfide nanosheets on dimolybdenum carbide nanomeshes enables efficient hydrogen evolution. Nano Res. 2022, 15, 3946–3951.

    CAS  Google Scholar 

  57. Zhong, W.; Xu, J. C.; Wang, P.; Zhu, B. C.; Fan, J. J.; Yu, H. G. Novel core—shell Ag@AgSex nanoparticle co-catalyst: In situ surface selenization for efficient photocatalytic H2 production of TiO2. Chin. J. Catal. 2022, 43, 1074–1083.

    CAS  Google Scholar 

  58. Geng, S.; Tian, F. Y.; Li, M. G.; Liu, Y. Q.; Sheng, J.; Yang, W. W.; Yu, Y. S.; Hou, Y. L. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816.

    CAS  Google Scholar 

  59. Jiang, Z. M.; Chen, Q.; Zheng, Q. Q.; Shen, R. C.; Zhang, P.; Li, X. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys. Chim. Sin. 2021, 37, 2010059.

    Google Scholar 

  60. Zhao, Y.; Shao, C. T.; Lin, Z. X.; Jiang, S. J.; Song, S. Q. Low-energy facets on CdS allomorph junctions with optimal phase ratio to boost charge directional transfer for photocatalytic H2 fuel evolution. Small 2020, 16, 2000944.

    CAS  Google Scholar 

  61. Xia, Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Liu, G. Unraveling photoexcited charge transfer pathway and process of CdS/graphene nanoribbon composites toward visible-light photocatalytic hydrogen evolution. Small 2019, 15, 1902459.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22178275) and the Natural Science Foundation of Hubei Province of China (No. 2022CFA001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Wang or Huogen Yu.

Electronic Supplementary Material

12274_2023_5629_MOESM1_ESM.pdf

Oxygen-contained amorphous MoSx cocatalyst by one-step photodeposition to enhance H-adsorption affinity for efficient photocatalytic H2 generation

Supplementary material, approximately 3.41 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, P., Wang, P., Wang, X. et al. Oxygen-contained amorphous MoSx cocatalyst by one-step photodeposition to enhance H-adsorption affinity for efficient photocatalytic H2 generation. Nano Res. 16, 8977–8986 (2023). https://doi.org/10.1007/s12274-023-5629-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5629-7

Keywords

Navigation