Skip to main content
Log in

Ru-based catalysts for efficient CO2 methanation: Synergistic catalysis between oxygen vacancies and basic sites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The fundamental insights of the reaction mechanism, especially the synergistic effect between oxygen vacancies and basic sites, are highly promising yet challenging for Ru-based catalysts during carbon dioxide (CO2) methanation. Herein, a series of Ru-based catalysts were employed to study the mechanism of CO2 methanation. It is found that Ru/CeO2 catalyst exhibits a much higher CO2 conversion (86%) and CH4 selectivity (100%), as well as excellent stability of 30 h due to the existence of abundant oxygen vacancies and weak basic sites. Additionally, the in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations reveal that the formate formation step dominated the hydrogenation route on Ru/CeO2 catalyst, and the b-HCOO* could be the key intermediate due to b-HCOO* is more easily hydrogenated to methane than m-HCOO*. The systematic study marks the significance of precise tailoring of the synergistic relationship between oxygen vacancies and basic sites for achieving the desired performance in CO2 methanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamkeng, A. D. N.; Wang, M. H.; Hu, J.; Du, W. L.; Qian, F. Transformation technologies for CO2 utilisation: Current status, challenges and future prospects. Chem. Eng. J. 2021, 409, 128138.

    CAS  Google Scholar 

  2. Sun, H.; Wu, C.; Shen, B.; Zhang, X.; Zhang, Y.; Huang, J. Progress in the development and application of CaO-based adsorbents for CO2 capture-a review. Mater. Today Sustain. 2018, 1–2, 1–27.

    Google Scholar 

  3. Sun, S. Z.; Lv, Z. Z.; Qiao, Y. T.; Qin, C. L.; Xu, S. J.; Wu, C. F. Integrated CO2 capture and utilization with CaO-alone for high purity syngas production. Carbon Capture Sci. Technol. 2021, 1, 100001.

    CAS  Google Scholar 

  4. Sun, H. M.; Wu, C. F. Autothermal CaO looping biomass gasification for renewable syngas production. Environ. Sci. Technol. 2019, 53, 9298–9305.

    CAS  Google Scholar 

  5. Hu, J. W.; Hongmanorom, P.; Chirawatkul, P.; Kawi, S. Efficient integration of CO2 capture and conversion over a Ni supported CeO2-modified CaO microsphere at moderate temperature. Chem. Eng. J. 2021, 426, 130864.

    CAS  Google Scholar 

  6. Li, Z. H.; Shi, R.; Ma, Y. N.; Zhao, J. Q.; Zhang, T. R. Photodriven CO2 hydrogenation into diverse products: Recent progress and perspective. J. Phys. Chem. Lett. 2022, 13, 5291–5303.

    CAS  Google Scholar 

  7. Sun, H. M.; Wang, J. Q.; Zhao, J. H.; Shen, B. X.; Shi, J.; Huang, J.; Wu, C. F. Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO2 capture and conversion. Appl. Catal. B:Environ. 2019, 244, 63–75.

    CAS  Google Scholar 

  8. Qin, Q.; Sun, M. M.; Wu, G. Z.; Dai, L. Emerging of heterostructured materials in CO2 electroreduction: A perspective. Carbon Capture Sci. Technol. 2022, 3, 100043.

    CAS  Google Scholar 

  9. Wang, H. H.; Zhang, S. N.; Zhao, T. J.; Liu, Y. X.; Liu, X.; Su, J.; Li, X. H.; Chen, J. S. Mild and selective hydrogenation of CO2 into formic acid over electron-rich MoC nanocatalysts. Sci. Bull. 2020, 65, 651–657.

    CAS  Google Scholar 

  10. Abdalla, A. M.; Hossain, S.; Nisfindy, O. B.; Azad, A. T.; Dawood, M.; Azad, A. K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manage. 2018, 165, 602–627.

    CAS  Google Scholar 

  11. Wang, P.; Zhang, X. Y.; Shi, R.; Zhao, J. Q.; Yuan, Z. Y.; Zhang, T. R. Light-driven hydrogen production from steam methane reforming via bimetallic PdNi catalysts derived from layered double hydroxide nanosheets. Energy Fuels 2022, 36, 11627–11635.

    CAS  Google Scholar 

  12. Gorre, J.; Ortloff, F.; Van Leeuwen, C. Production costs for synthetic methane in 2030 and 2050 of an optimized power-to-gas plant with intermediate hydrogen storage. Appl. Energy 2019, 253, 113594.

    CAS  Google Scholar 

  13. Chen, G. B.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Li, Z. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. From solar energy to fuels: Recent advances in light-driven C1 chemistry. Angew. Chem., Int. Ed. 2019, 58, 17528–17551.

    CAS  Google Scholar 

  14. Italiano, C.; Ferrante, G. D.; Pino, L.; Laganà, M.; Ferraro, M.; Antonucci, V.; Vita, A. Silicon carbide and alumina open-cell foams activated by Ni/CeO2-ZrO2 catalyst for CO2 methanation in a heat-exchanger reactor. Chem. Eng. J. 2022, 434, 134685.

    CAS  Google Scholar 

  15. Shen, L.; Xu, J.; Zhu, M. H.; Han, Y. F. Essential role of the support for nickel-based CO2 methanation catalysts. ACS Catal. 2020, 10, 14581–14591.

    CAS  Google Scholar 

  16. Li, Z. H.; Liu, J. J.; Shi, R.; Waterhouse, G. I. N.; Wen, X. D.; Zhang, T. R. Fe-based catalysts for the direct photohydrogenation of CO2 to value-added hydrocarbons. Adv. Energy Mater. 2021, 11, 2002783.

    CAS  Google Scholar 

  17. Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L. Recent advances in catalytichydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703–3727.

    CAS  Google Scholar 

  18. Rui, N.; Zhang, X. S.; Zhang, F.; Liu, Z. Y.; Cao, X. X.; Xie, Z. H.; Zou, R.; Senanayake, S. D.; Yang, Y. H.; Rodriguez, J. A. et al. Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization. Appl. Catal. B:Environ. 2021, 282, 119581.

    CAS  Google Scholar 

  19. Xu, J. H.; Su, X.; Duan, H. M.; Hou, B. L.; Lin, Q. Q.; Liu, X. Y.; Pan, X. L.; Pei, G. X.; Geng, H. R.; Huang, Y. Q. et al. Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation. J. Catal. 2016, 333, 227–237.

    CAS  Google Scholar 

  20. Quindimil, A.; De-La-Torre, U.; Pereda-Ayo, B.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; González-Marcos, J. A.; Bueno-López, A.; González-Velasco, J. R. Effect of metal loading on the CO2 methanation: A comparison between alumina supported Ni and Ru catalysts. Catal. Today 2020, 356, 419–432.

    CAS  Google Scholar 

  21. Cho, E. H.; Park, Y. K.; Park, K. Y.; Song, D.; Koo, K. Y.; Jung, U.; Yoon, W. R.; Ko, C. H. Simultaneous impregnation of Ni and an additive via one-step melt-infiltration: Effect of alkaline-earth metal (Ca, Mg, Sr, and Ba) addition on Ni/γ-Al2O3 for CO2 methanation. Chem. Eng. J. 2022, 428, 131393.

    CAS  Google Scholar 

  22. Guo, X. P.; Peng, Z. J.; Traitangwong, A.; Wang, G.; Xu, H. Y.; Meeyoo, V.; Li, C. S.; Zhang, S. J. Ru nanoparticles stabilized by ionic liquids supported onto silica: Highly active catalysts for low-temperature CO2 methanation. Green Chem. 2018, 20, 4932–4945.

    CAS  Google Scholar 

  23. He, M.; Ji, J.; Liu, B. Y.; Huang, H. B. Reduced TiO2 with tunable oxygen vacancies for catalytic oxidation of formaldehyde at room temperature. Appl. Surf. Sci. 2019, 473, 934–942.

    CAS  Google Scholar 

  24. Sun, H. M.; Wang, Y. H.; Xu, S. J.; Osman, A. I.; Stenning, G.; Han, J. Y.; Sun, S. Z.; Rooney, D.; Williams, P. T.; Wang, F. et al. Understanding the interaction between active sites and sorbents during the integrated carbon capture and utilization process. Fuel 2021, 286, 119308.

    CAS  Google Scholar 

  25. Park, S. J.; Bukhovko, M. P.; Jones, C. W. Integrated capture and conversion of CO2 into methane using NaNO3/MgO + Ru/Al2O3 as a catalytic sorbent. Chem. Eng. J. 2021, 420, 130369.

    CAS  Google Scholar 

  26. Ma, L. X.; Ye, R. P.; Huang, Y. Y.; Reina, T. R.; Wang, X. Y.; Li, C. M.; Zhang, X. L.; Fan, M. H.; Zhang, R. G.; Liu, J. Enhanced low-temperature CO2 methanation performance of Ni/ZrO2 catalysts via a phase engineering strategy. Chem. Eng. J. 2022, 446, 137031.

    CAS  Google Scholar 

  27. Liang, C. F.; Zhang, L. J.; Zheng, Y.; Zhang, S.; Liu, Q.; Gao, G. G.; Dong, D. H.; Wang, Y.; Xu, L. L.; Hu, X. Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates. Fuel 2020, 262, 116521.

    CAS  Google Scholar 

  28. Pan, Q. S.; Peng, J. X.; Sun, T. J.; Wang, S.; Wang, S. D. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites. Catal. Commun. 2014, 45, 74–78.

    Google Scholar 

  29. Wang, F.; He, S.; Chen, H.; Wang, B.; Zheng, L. R.; Wei, M.; Evans, D. G.; Duan, X. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation. J. Am. Chem. Soc. 2016, 138, 6298–6305.

    CAS  Google Scholar 

  30. Chang, K.; Zhang, H. C.; Cheng, M. J.; Lu, Q. Application of ceria in CO2 conversion catalysis. ACS Catal. 2020, 10, 613–631.

    CAS  Google Scholar 

  31. Dreyer, J. A. H.; Li, P. X.; Zhang, L. H.; Beh, G. K.; Zhang, R. D.; Sit, P. H. L.; Teoh, W. Y. Influence of the oxide support reducibility on the CO2 methanation over Ru-based catalysts. Appl. Catal. B:Environ. 2017, 219, 715–726.

    CAS  Google Scholar 

  32. Tang, Y.; Wei, Y. C.; Wang, Z. Y.; Zhang, S. R.; Li, Y. T.; Nguyen, L.; Li, Y. X.; Zhou, Y.; Shen, W. J.; Tao, F. F. et al. Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4. J. Am. Chem. Soc. 2019, 141, 7283–7293.

    CAS  Google Scholar 

  33. Du, Y. X.; Qin, C.; Xu, Y. F.; Xu, D.; Bai, J. Y.; Ma, G. Y.; Ding, M. Y. Ni nanoparticles dispersed on oxygen vacancies-rich CeO2 nanoplates for enhanced low-temperature CO2 methanation performance. Chem. Eng. J. 2021, 418, 129402.

    CAS  Google Scholar 

  34. Lee, S. M.; Lee, Y. H.; Moon, D. H.; Ahn, J. Y.; Nguyen, D. D.; Chang, S. W.; Kim, S. S. Reaction mechanism and catalytic impact of Ni/CeO2−x catalyst for low-temperature CO2 methanation. Ind. Eng. Chem. Res. 2019, 58, 8656–8662.

    CAS  Google Scholar 

  35. Zhang, J. C.; Yang, Y. J.; Liu, J.; Xiong, B. Mechanistic understanding of CO2 hydrogenation to methane over Ni/CeO2 catalyst. Appl. Surf. Sci. 2021, 558, 149866.

    CAS  Google Scholar 

  36. Zhang, X. Y.; You, R.; Li, D.; Cao, T.; Huang, W. X. Reaction sensitivity of ceria morphology effect on Ni/CeO2 catalysis in propane oxidation reactions. ACS Appl. Mater. Interfaces 2017, 9, 35897–35907.

    CAS  Google Scholar 

  37. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  38. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  39. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    CAS  Google Scholar 

  40. Sun, H. M.; Zhang, Y.; Guan, S. L.; Huang, J.; Wu, C. F. Direct and highly selective conversion of captured CO2 into methane through integrated carbon capture and utilization over dual functional materials. Util. 2020, 38, 262–272.

    CAS  Google Scholar 

  41. Sakpal, T.; Lefferts, L. Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation. J. Catal. 2018, 367, 171–180.

    CAS  Google Scholar 

  42. Huang, H.; Dai, Q. G.; Wang, X. Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene. Appl. Catal. B: Environ. 2014, 158–155, 96–105.

    Google Scholar 

  43. Guo, Y.; Mei, S.; Yuan, K.; Wang, D. J.; Liu, H. C.; Yan, C. H.; Zhang, Y. W. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect. ACS Catal. 2018, 8, 6203–6215.

    CAS  Google Scholar 

  44. Wang, N.; Qian, W. Z.; Chu, W.; Wei, F. Crystal-plane effect of nanoscale CeO2 on the catalytic performance of Ni/CeO2 catalysts for methane dry reforming. Catal. Sci. Technol. 2016, 6, 3594–3605.

    CAS  Google Scholar 

  45. Dai, Q. G.; Huang, H.; Zhu, Y.; Deng, W.; Bai, S. X.; Wang, X. Y.; Lu, G. Z. Catalysis oxidation of 1,2-dichloroethane and ethyl acetate over ceria nanocrystals with well-defined crystal planes. Appl. Catal. B:Environ. 2012, 117, 360–368.

    Google Scholar 

  46. Sun, H. M.; Zhang, Y.; Wang, C. F.; Isaacs, M. A.; Osman, A. I.; Wang, Y.; Rooney, D.; Wang, Y. H.; Yan, Z. F.; Parlett, C. M. A. et al. Integrated carbon capture and utilization: Synergistic catalysis between highly dispersed Ni clusters and ceria oxygen vacancies. Chem. Eng. J. 2022, 437, 135394.

    CAS  Google Scholar 

  47. Liu, K.; Sun, Y. B.; Feng, J.; Liu, Y.; Zhu, J.; Han, C. J.; Chen, C. Z.; Bao, T. Y.; Cao, X. Q.; Zhao, X. M. et al. Intensified gas-phase hydrogenation of acetone to isopropanol catalyzed at metal-oxide interfacial sites. Chem. Eng. J. 2023, 454, 140059.

    CAS  Google Scholar 

  48. Li, Z. W.; Li, M.; Ashok, J.; Kawi, S. NiCo@NiCo phyllosilicate@CeO2 hollow core shell catalysts for steam reforming of toluene as biomass tar model compound. Energy Convers. Manage. 2019, 180, 822–830.

    CAS  Google Scholar 

  49. Hu, Z.; Liu, X. F.; Meng, D. M.; Guo, Y.; Guo, Y. L.; Lu, G. Z. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS Catal. 2016, 6, 2265–2279.

    CAS  Google Scholar 

  50. Liu, Z. Y.; Zhang, F.; Rui, N.; Li, X.; Lin, L. L.; Betancourt, L. E.; Su, D.; Xu, W. Q.; Cen, J. J.; Attenkofer, K. et al. Highly active ceria-supported Ru catalyst for the dry reforming of methane: In situ identification of Ruδ+-Ce3+ interactions for enhanced conversion. ACS Catal. 2019, 9, 3349–3359.

    CAS  Google Scholar 

  51. Cao, X. C.; Long, F.; Zhai, Q. L.; Zhao, J. P.; Xu, J. M.; Jiang, J. C. Heterogeneous Ni and MoOx co-loaded CeO2 catalyst for the hydrogenation of fatty acids to fatty alcohols under mild reaction conditions. Fuel 2021, 298, 120829.

    CAS  Google Scholar 

  52. An, J. H.; Wang, Y. H.; Lu, J. M.; Zhang, J.; Zhang, Z. X.; Xu, S. T.; Liu, X. Y.; Zhang, T.; Gocyla, M.; Heggen, M. et al. Acid-promoter-free ethylene methoxycarbonylation over Ru-clusters/ceria: The catalysis of interfacial Lewis acid-base pair. J. Am. Chem. Soc. 2018, 140, 4172–4181.

    CAS  Google Scholar 

  53. Le, T. A.; Kang, J. K.; Park, E. D. Active Ni/SiO2 catalysts with high Ni content for benzene hydrogenation and CO methanation. Appl. Catal. A Gen. 2019, 581, 67–73.

    CAS  Google Scholar 

  54. Pokrovski, K. A.; Bell, A. T. Effect of dopants on the activity of Cu/M0.3Zr0.7O2 (M = Ce, Mn, and Pr) for CO hydrogenation to methanol. J. Catal. 2006, 244, 43–51.

    CAS  Google Scholar 

  55. Li, C. M.; Chen, K.; Wang, X. Y.; Xue, N.; Yang, H. Q. Understanding the role of Cu/ZnO interaction in CO2 hydrogenation to methanol. Acta Phys. Chim. Sin. 2021, 37, 2009101.

    Google Scholar 

  56. Xu, L. L.; Wen, X. Y.; Chen, M. D.; Lv, C. F.; Cui, Y.; Wu, X. Y.; Wu, C. E.; Yang, B.; Miao, Z. C.; Hu, X. Mesoporous Ce-Zr solid solutions supported Ni-based catalysts for low-temperature CO2 methanation by tuning the reaction intermediates. Fuel 2020, 282, 118813.

    CAS  Google Scholar 

  57. Garbarino, G.; Bellotti, D.; Finocchio, E.; Magistri, L.; Busca, G. Methanation of carbon dioxide on Ru/Al2O3: Catalytic activity and infrared study. Catal. Today 2016, 277, 21–28.

    CAS  Google Scholar 

  58. Hu, F. Y.; Ye, R. P.; Jin, C. K.; Liu, D.; Chen, X. H.; Li, C.; Lim, K. H.; Song, G. Q.; Wang, T. C.; Feng, G. et al. Ni nanoparticles enclosed in highly mesoporous nanofibers with oxygen vacancies for efficient CO2 methanation. Appl. Catal. B:Environ. 2022, 317, 121715.

    CAS  Google Scholar 

  59. López-Rodríguez, S.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; Herrera, F. C.; Pellegrin, E.; Escudero, C.; García-Melchor, M.; Bueno-López, A. Elucidating the role of the metal catalyst and oxide support in the Ru/CeO2-catalyzed CO2 methanation mechanism. J. Phys. Chem. C 2021, 125, 25533–25544.

    Google Scholar 

  60. Holmgren, A.; Andersson, B.; Duprez, D. Interactions of CO with Pt/ceria catalysts. Appl. Catal. B:Environ. 1999, 22, 215–230.

    CAS  Google Scholar 

  61. Cárdenas-Arenas, A.; Quindimil, A.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; De-La-Torre, U.; Pereda-Ayo, B.; González-Marcos, J. A.; González-Velasco, J. R.; Bueno-López, A. Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts. Appl. Catal. B:Environ. 2020, 265, 118538.

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the National Natural Science Foundation of China (No. 22102215) and the Fundamental Research Funds for the Central Universities (Nos. 21CX06013A and 22CX03001A). This work was financially supported by the State Key Laboratory of Heavy Oil Processing and the Key Project of China National Key R&D Plan (No. 2018YFE0118200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhang, Youhe Wang or Hongman Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Lu, Y., Zhang, Y. et al. Ru-based catalysts for efficient CO2 methanation: Synergistic catalysis between oxygen vacancies and basic sites. Nano Res. 16, 12153–12164 (2023). https://doi.org/10.1007/s12274-023-5592-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5592-3

Keywords

Navigation