Skip to main content
Log in

Interatomic electron transfer promotes electroreduction CO2-to-CO efficiency over a CuZn diatomic site

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Diatomic site catalysts (DACs) with two adjacent atomic metal species can provide synergistic interactions and more sophisticated functionalities to break the bottleneck of intrinsic drawbacks of single atom catalysts (SACs). Herein, we have designed a CuZn diatomic site (CuZn-DAS) electrocatalyst with unique coordination structure (CuN4-ZnN4) by anchoring and ordering the spatial distance between the metal precursors on the carbon nitride (C3N4) derived N-doped carbon (NC) substrate. The CuZn-DAS/NC shows high activity and selectivity for electroreduction CO2 into CO. The Faradaic efficiency for CO of CuZn-DAS/NC (98.4%) is higher than that of Cu single atomic site on NC (Cu-SAS/NC) (36.4%) and Zn single atomic site on NC (Zn-SAS/NC) (66.8%) at −0.6 V versus reversible hydrogen electrode (vs. RHE). In situ characterizations reveal that the CuZn-DAS is more favorable for the formation and adsorption of ⋆COOH than those of the electrocatalysts with single atomic site. Theorical calculations show that the charge redistribution of Zn site in CuZn-DAS/NC caused by the considerable electron transfers from Zn atoms to the adjacent Cu atoms can reduce the adsorption energy barriers for ⋆COOH and ⋆CO production, improving the activity and CO selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X. L.; Fu, N. H.; Liu, J. C.; Yu, K.; Li, Z.; Xu, Z. F.; Liang, X.; Zhu, P.; Ye, C. L.; Zhou, A. W. et al. Atomic replacement of PtNi nanoalloys within Zn-ZIF-8 for the fabrication of a multisite CO2 reduction electrocatalyst. J. Am. Chem. Soc. 2022, 144, 23223–23229.

    CAS  Google Scholar 

  2. Ge, L.; Rabiee, H.; Li, M. R.; Subramanian, S.; Zheng, Y.; Lee, J. H.; Burdyny, T.; Wang, H. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 2022, 8, 663–692.

    CAS  Google Scholar 

  3. Li, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev. 2022, 51, 1234–1252.

    CAS  Google Scholar 

  4. Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

    CAS  Google Scholar 

  5. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    CAS  Google Scholar 

  6. Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed., in press, DOI: https://doi.org/10.1002/anie.202218460.

  7. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

    CAS  Google Scholar 

  8. Song, Y. F.; Junqueira, J. R. C.; Sikdar, N.; Öhl, D.; Dieckhöfer, S.; Quast, T.; Seisel, S.; Masa, J.; Andronescu, C.; Schuhmann, W. B-Cu-Zn gas diffusion electrodes for CO2 electroreduction to C2+ products at high current densities. Angew. Chem., Int. Ed. 2021, 60, 9135–9141.

    CAS  Google Scholar 

  9. Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

    CAS  Google Scholar 

  10. Wang, X.; He, W. H.; Shi, J. L.; Junqueira, J. R. C.; Zhang, J.; Dieckhöfer, S.; Seisel, S.; Das, D.; Schuhmann, W. Ag-induced phase transition of Bi2O3 nanofibers for enhanced energy conversion efficiency towards formate in CO2 electroreduction. Chem. Asian J. 2023, 18, e202201165.

    CAS  Google Scholar 

  11. Overa, S.; Ko, B. H.; Zhao, Y. R.; Jiao, F. Electrochemical approaches for CO2 conversion to chemicals: A journey toward practical applications. Acc. Chem. Res. 2022, 55, 638–648.

    CAS  Google Scholar 

  12. Zhu, J. B.; Xiao, M. L.; Ren, D. Z.; Gao, R.; Liu, X. Z.; Zhang, Z.; Luo, D.; Xing, W.; Su, D.; Yu, A. P. et al. Quasi-covalently coupled Ni-Cu atomic pair for synergistic electroreduction of CO2. J. Am. Chem. Soc. 2022, 144, 9661–9671.

    CAS  Google Scholar 

  13. Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

    CAS  Google Scholar 

  14. Fan, Z. Z.; Luo, R. C.; Zhang, Y. X.; Zhang, B.; Zhai, P. L.; Zhang, Y. T.; Wang, C.; Gao, J. F.; Zhou, W.; Sun, L. C. et al. Oxygen-bridged indium-nickel atomic pair as dual-metal active sites enabling synergistic electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202216326.

    CAS  Google Scholar 

  15. Qin, H. G.; Li, F. Z.; Du, Y. F.; Yang, L. F.; Wang, H.; Bai, Y. Y.; Lin, M.; Gu, J. Quantitative understanding of cation effects on the electrochemical reduction of CO2 and H+ in acidic solution. ACS Catal. 2022, 13, 916–926.

    Google Scholar 

  16. Koolen, C. D.; Luo, W.; Züttel, A. From single crystal to single atom catalysts: Structural factors influencing the performance of metal catalysts for CO2 electroreduction. ACS Catal. 2023, 13, 948–973.

    CAS  Google Scholar 

  17. Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

    CAS  Google Scholar 

  18. Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dualatom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem. 2021, 133, 13500–13505.

    Google Scholar 

  19. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    CAS  Google Scholar 

  20. Wu, X. F.; Sun, J. W.; Liu, P. F.; Zhao, J. Y.; Liu, Y. W.; Guo, L. S.; Dai, S.; Yang, H. G.; Zhao, H. J. Molecularly dispersed cobalt phthalocyanine mediates selective and durable CO2 reduction in a membrane flow cell. Adv. Funct. Mater. 2022, 32, 2107301.

    CAS  Google Scholar 

  21. Pan, F. P.; Li, B. Y.; Sarnello, E.; Fei, Y. H.; Feng, X. H.; Gang, Y.; Xiang, X. M.; Fang, L. Z.; Li, T.; Hu, Y. H. et al. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction. ACS Catal. 2020, 10, 10803–10811.

    CAS  Google Scholar 

  22. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    CAS  Google Scholar 

  23. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  24. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  25. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    CAS  Google Scholar 

  26. Liang, X.; Fu, N. H.; Yao, S. C.; Li, Z.; Li, Y. D. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174.

    CAS  Google Scholar 

  27. Li, M. H.; Wang, H. F.; Luo, W.; Sherrell, P. C.; Chen, J.; Yang, J. P. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 2020, 32, 2001848.

    CAS  Google Scholar 

  28. Tang, T. M.; Wang, Z. L.; Guan, J. Q. Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M-N-C materials. Adv. Funct. Mater. 2022, 32, 2111504.

    CAS  Google Scholar 

  29. Zang, W. J.; Kou, Z. K.; Pennycook, S. J.; Wang, J. Heterogeneous single atom electrocatalysis, where “singles” are “married”. Adv. Energy Mater. 2020, 10, 1903181.

    CAS  Google Scholar 

  30. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Google Scholar 

  31. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    CAS  Google Scholar 

  32. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    CAS  Google Scholar 

  33. Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

    CAS  Google Scholar 

  34. Li, Y. Z.; Wei, B.; Zhu, M. H.; Chen, J. C.; Jiang, Q. K.; Yang, B.; Hou, Y.; Lei, L. C.; Li, Z. J.; Zhang, R. F. et al. Synergistic effect of atomically dispersed Ni-Zn pair sites for enhanced CO2 electroreduction. Adv. Mater. 2021, 33, 2102212.

    CAS  Google Scholar 

  35. Cho, J. H.; Lee, C.; Hong, S. H.; Jang, H. Y.; Back, S.; Seo, M. G.; Lee, M.; Min, H. K.; Choi, Y.; Jang, Y. J. et al. Transition metal ion doping on ZIF-8 enhances the electrochemical CO2 reduction reaction. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202208224.

  36. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    CAS  Google Scholar 

  37. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

  38. Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

    CAS  Google Scholar 

  39. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    CAS  Google Scholar 

  40. Wang, Y.; Park, B. J.; Paidi, V. K.; Huang, R.; Lee, Y.; Noh, K. J.; Lee, K. S.; Han, J. W. Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 2022, 7, 640–649.

    CAS  Google Scholar 

  41. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  42. Cheng, H. Y.; Wu, X. M.; Feng, M. M.; Li, X. C.; Lei, G. P.; Fan, Z. H.; Pan, D. W.; Cui, F. J.; He, G. H. Atomically dispersed Ni/Cu dual sites for boosting the CO2 reduction reaction. ACS Catal. 2021, 11, 12673–12681.

    CAS  Google Scholar 

  43. Feng, M. M.; Wu, X. M.; Cheng, H. Y.; Fan, Z. H.; Li, X. C.; Cui, F. J.; Fan, S.; Dai, Y.; Lei, G. P.; He, G. H. Well-defined Fe-Cu diatomic sites for efficient catalysis of CO2 electroreduction. J. Mater. Chem. A 2021, 9, 23817–23827.

    CAS  Google Scholar 

  44. Sun, K. A.; Yu, K.; Fang, J. J.; Zhuang, Z. W.; Tan, X.; Wu, Y.; Zeng, L. Y.; Zhuang, Z. B.; Pan, Y.; Chen, C. Nature-inspired design of molybdenum-selenium dual-single-atom electrocatalysts for CO2 reduction. Adv. Mater. 2022, 34, 2206478.

    CAS  Google Scholar 

  45. Pei, J. J.; Wang, T.; Sui, R.; Zhang, X. J.; Zhou, D. N.; Qin, F. J.; Zhao, X.; Liu, Q. H.; Yan, W. S.; Dong, J. C. et al. N-bridged Co-N-Ni: New bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 2021, 14, 3019–3028.

    CAS  Google Scholar 

  46. Zheng, W. Z.; Wang, Y.; Shuai, L.; Wang, X. Y.; He, F.; Lei, C. J.; Li, Z. J.; Yang, B.; Lei, L. C.; Yuan, C. et al. Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants. Adv. Funct. Mater. 2021, 31, 2008146.

    CAS  Google Scholar 

  47. Leverett, J.; Daiyan, R.; Gong, L. L.; Iputera, K.; Tong, Z. Z.; Qu, J. T.; Ma, Z. P.; Zhang, Q. R.; Cheong, S.; Cairney, J. et al. Designing undercoordinated Ni-Nx and Fe-Nx on holey graphene for electrochemical CO2 conversion to syngas. ACS Nano 2021, 15, 12006–12018.

    CAS  Google Scholar 

  48. Yang, F.; Song, P.; Liu, X. Z.; Mei, B. B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. L. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem., Int. Ed. 2018, 57, 12303–12307.

    CAS  Google Scholar 

  49. Wang, S. G.; Zhou, P.; Zhou, L.; Lv, F.; Sun, Y. J.; Zhang, Q. H.; Gu, L.; Yang, H.; Guo, S. J. A unique gas-migration, trapping, and emitting strategy for high-loading single atomic Cd sites for carbon dioxide electroreduction. Nano Lett. 2021, 21, 4262–4269.

    CAS  Google Scholar 

  50. Ding, T.; Liu, X. K.; Tao, Z. N.; Liu, T. Y.; Chen, T.; Zhang, W.; Shen, X. Y.; Liu, D.; Wang, S. C.; Pang, B. B. et al. Atomically precise dinuclear site active toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2021, 143, 11317–11324.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 52073124 and 52273058), the Natural Science Foundation of Jiangsu Province (No. SBK2022030167), the MOE & SAFEA, 111 Project (No. B13025), and the Fundamental Research Funds for the Central Universities. The authors would also like to thank the Central Laboratory, School of Chemical and Material Engineering, Jiangnan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Zhu or Mingliang Du.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, J., Zhu, H., Zhao, Q. et al. Interatomic electron transfer promotes electroreduction CO2-to-CO efficiency over a CuZn diatomic site. Nano Res. 16, 8863–8870 (2023). https://doi.org/10.1007/s12274-023-5577-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5577-2

Keywords

Navigation