Skip to main content
Log in

Bottom-up synthesis of 2D heterostructures enables effective polysulfides inhibition and conversion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Due to the high theoretical capacity and energy density, lithium-sulfur (Li−S) batteries have good commercial prospects. However, shuttle effect of soluble lithium polysulfides (LiPSs) formed by sulfur reduction has severely limited the further development of Li−S batteries. In this work, the two-dimensional (2D) MXene-metal-organic framework (MOF) (Ti3C2Tx-CoBDC (BDC: 1,4-benzenedicarboxylate)) heterostructures were employed to modify the separator to inhibit the shuttle effect and facilitate the conversion of the soluble polysulfides. Firstly, a bottom-up synthesis strategy was adopted to synthesize the 2D MXene-MOF heterogeneous layered structure. With high specific surface area, in which the catalytic metal atoms not only restrain the shuttle effect of polysulfides but also exhibit excellent redox electrocatalytic performance. The cell with Ti3C2Tx-CoBDC@PP (PP: polypropylene) separator has a high initial capacity of 1255 mAh·g−1 at 0.5 C. When the current density is 2 C, the battery has a capacity retention rate of 94.4% after 600 cycles, with the fading rate of only 0.01% per cycle. Besides, with a sulfur loading of 7.5 mg·cm−2, the battery shows the discharge capacity of 1096 mAh·g−1 at 0.2 C and exhibits excellent cycling stability. This work offers novel insights into the application of MOF and MXene heterostructures in Li−S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li−O2 and Li−S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  CAS  Google Scholar 

  2. Lei, T. Y.; Chen, W.; Lv, W. Q.; Huang, J. W.; Zhu, J.; Chu, J. W.; Yan, C. Y.; Wu, C. Y.; Yan, Y. C.; He, W. D. et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091–2104.

    Article  CAS  Google Scholar 

  3. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

    Article  CAS  Google Scholar 

  4. Xu, J.; An, S. H.; Song, X. Y.; Cao, Y. J.; Wang, N.; Qiu, X.; Zhang, Y.; Chen, J. W.; Duan, X. L.; Huang, J. H. et al. Towards high performance Li−S batteries via sulfonate-rich COF-modified separator. Adv. Mater. 2021, 33, 2105178.

    Article  CAS  Google Scholar 

  5. Zhao, C.; Xu, G. L.; Yu, Z.; Zhang, L. C.; Hwang, I.; Mo, Y. X.; Ren, Y. X.; Cheng, L.; Sun, C. J.; Ren, Y. et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 2021, 16, 166–173.

    Article  CAS  Google Scholar 

  6. Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Self-assembly of 0D–2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 2021, 33, 2101204.

    Article  CAS  Google Scholar 

  7. Shaibani, M.; Mirshekarloo, M. S.; Singh, R.; Easton, C. D.; Cooray, M. C. D.; Eshraghi, N.; Abendroth, T.; Dörfler, S.; Althues, H.; Kaskel, S. et al. Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium-sulfur batteries. Sci. Adv. 2020, 6, eaay2757.

    Article  CAS  Google Scholar 

  8. Li, S. L.; Zhang, W. F.; Zheng, J. F.; Lv, M. Y.; Song, H. Y.; Du, L. Inhibition of polysulfide shuttles in Li−S batteries: Modified separators and solid-state electrolytes. Adv. Energy Mater. 2021, 11, 2000779.

    Article  CAS  Google Scholar 

  9. Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

    Article  CAS  Google Scholar 

  10. Peng, L. L.; Wei, Z. Y.; Wan, C. Z.; Li, J.; Chen, Z.; Zhu, D.; Baumann, D.; Liu, H. T.; Allen, C. S.; Xu, X. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 2020, 3, 762–770.

    Article  CAS  Google Scholar 

  11. Qian, J.; Xing, Y.; Yang, Y.; Li, Y.; Yu, K. X.; Li, W. L.; Zhao, T.; Ye, Y. S.; Li, L.; Wu, F. et al. Enhanced electrochemical kinetics with highly dispersed conductive and electrocatalytic mediators for lithium-sulfur batteries. Adv. Mater. 2021, 33, 2100810.

    Article  CAS  Google Scholar 

  12. Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

    Article  Google Scholar 

  13. He, J. R.; Chen, Y. F.; Manthiram, A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li−S batteries. Energy Environ. Sci. 2018, 11, 2560–2568.

    Article  CAS  Google Scholar 

  14. Huang, X. Z.; He, R.; Li, M.; Chee, M. O. L.; Dong, P.; Lu, J. Functionalized separator for next-generation batteries. Mater. Today 2020, 41, 143–155.

    Article  CAS  Google Scholar 

  15. Zhou, C.; Li, Z. H.; Xu, X.; Mai, L. Q. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 2021, 8, nwab055.

    Article  CAS  Google Scholar 

  16. Knebel, A.; Bavykina, A.; Datta, S. J.; Sundermann, L.; Garzon-Tovar, L.; Lebedev, Y.; Durini, S.; Ahmad, R.; Kozlov, S. M.; Shterk, G. et al. Solution processable metal-organic frameworks for mixed matrix membranes using porous liquids. Nat. Mater. 2020, 19, 1346–1353.

    Article  CAS  Google Scholar 

  17. Li, C. E.; Liu, J. H.; Zhang, K. X.; Zhang, S. W.; Lee, Y.; Li, T. Coating the right polymer: Achieving ideal metal-organic framework particle dispersibility in polymer matrixes using a coordinative crosslinking surface modification method. Angew. Chem., Int. Ed. 2021, 60, 14138–14145.

    Article  CAS  Google Scholar 

  18. Liang, Z. B.; Qu, C.; Guo, W. H.; Zou, R. Q.; Xu, Q. Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. 2018, 30, 1702891.

    Article  Google Scholar 

  19. Wang, Z. S.; Shen, J. D.; Liu, J.; Xu, X. J.; Liu, Z. B.; Hu, R. Z.; Yang, L. C.; Feng, Y. Z.; Liu, J.; Shi, Z. C. et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv. Mater. 2019, 31, 1902228.

    Article  Google Scholar 

  20. Ye, Z. Q.; Jiang, Y.; Qian, J.; Li, W. L.; Feng, T.; Li, L.; Wu, F.; Chen, R. J. Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium-sulfur batteries. Nano Energy 2019, 64, 103965.

    Article  CAS  Google Scholar 

  21. Yang, D. W.; Liang, Z. F.; Tang, P. Y.; Zhang, C. Q.; Tang, M. X.; Li, Q. Z.; Biendicho, J. J.; Li, J. S.; Heggen, M.; Dunin-Borkowski, R. E. et al. A high conductivity 1D π−d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium-sulfur batteries. Adv. Mater. 2022, 34, 2108835.

    Article  CAS  Google Scholar 

  22. Wu, F.; Zhao, S. Y.; Chen, L.; Lu, Y.; Su, Y. F.; Jia, Y. N.; Bao, L. Y.; Wang, J.; Chen, S.; Chen, R. J. Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries. Energy Storage Mater. 2018, 14, 383–391.

    Article  Google Scholar 

  23. Chen, K.; Sun, Z. H.; Fang, R. P.; Shi, Y.; Cheng, H. M.; Li, F. Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707592.

    Article  Google Scholar 

  24. Li, W. T.; Guo, X. T.; Geng, P. B.; Du, M.; Jing, Q. L.; Chen, X. D.; Zhang, G. X.; Li, H. P.; Xu, Q.; Braunstein, P. et al. Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li−S battery. Adv. Mater. 2021, 33, 2105163.

    Article  CAS  Google Scholar 

  25. Liu, B. R.; Taheri, M.; Torres, J. F.; Fusco, Z.; Lu, T.; Liu, Y.; Tsuzuki, T.; Yu, G. H.; Tricoli, A. Janus conductive/insulating microporous ion-sieving membranes for stable Li−S batteries. ACS Nano 2020, 14, 13852–13864.

    Article  CAS  Google Scholar 

  26. Gu, S. H.; Jiang, H. L.; Li, X. C.; Dai, Y.; Zheng, W. J.; Jiang, X. B.; He, G. H. Dispersing single-layered Ti3C2Tx nanosheets in hierarchically-porous membrane for high-efficiency Li+ transporting and polysulfide anchoring in Li−S batteries. Energy Storage Mater. 2022, 53, 32–41.

    Article  Google Scholar 

  27. Huang, X.; Tang, J. Y.; Luo, B.; Knibbe, R.; Lin, T.; Hu, H.; Rana, M.; Hu, Y. X.; Zhu, X. B.; Gu, Q. F. et al. Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901872.

    Article  Google Scholar 

  28. Wei, C. L.; Wang, Y. S.; Zhang, Y. C.; Tan, L. W.; Qian, Y.; Tao, Y.; Xiong, S. L.; Feng, J. K. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 3576–3584.

    Article  CAS  Google Scholar 

  29. Xiong, D. B.; Shi, Y. M.; Yang, H. Y. Rational design of MXene-based films for energy storage: Progress, prospects. Mater. Today 2021, 46, 183–211.

    Article  CAS  Google Scholar 

  30. Zhao, M. Q.; Sedran, M.; Ling, Z.; Lukatskaya, M. R.; Mashtalir, O.; Ghidiu, M.; Dyatkin, B.; Tallman, D. J.; Djenizian, T.; Barsoum, M. W. et al. Synthesis of carbon/sulfur nanolaminates by electrochemical extraction of titanium from Ti2SC. Angew. Chem., Int. Ed. 2015, 54, 4810–4814.

    Article  CAS  Google Scholar 

  31. Zhou, C.; Li, M.; Hu, N. T.; Yang, J. H.; Li, H.; Yan, J. W.; Lei, P. Y.; Zhuang, Y. P.; Guo, S. W. Single-atom-regulated heterostructure of binary nanosheets to enable dendrite-free and kinetics-enhanced Li−S batteries. Adv. Funct. Mater. 2022, 32, 2204635.

    Article  CAS  Google Scholar 

  32. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  33. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem. 2023, 62, e202212653.

    CAS  Google Scholar 

  34. Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering Janus electrode for rechargeable Na−S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

    Article  CAS  Google Scholar 

  35. Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

    Article  CAS  Google Scholar 

  36. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    Article  CAS  Google Scholar 

  37. Jiao, L.; Zhang, C.; Geng, C. N.; Wu, S. C.; Li, H.; Lv, W.; Tao, Y.; Chen, Z. J.; Zhou, G. M.; Li, J. et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900219.

    Article  Google Scholar 

  38. Zhang, S. Z.; Zhong, N.; Zhou, X.; Zhang, M. J.; Huang, X. P.; Yang, X. L.; Meng, R. J.; Liang, X. Comprehensive design of the high-sulfur-loading Li−S battery based on MXene nanosheets. Nano-Micro Lett. 2020, 12, 112.

    Article  CAS  Google Scholar 

  39. Malik, R. Maxing out water desalination with MXenes. Joule 2018, 2, 591–593.

    Article  CAS  Google Scholar 

  40. Qian, X. J.; Fan, X. Q.; Peng, Y. L.; Xue, P.; Sun, C.; Shi, X. L.; Lai, C.; Liang, J. J. Polysiloxane cross-linked mechanically stable MXene-based lithium host for ultrastable lithium metal anodes with ultrahigh current densities and capacities. Adv. Funct. Mater. 2021, 31, 2008044.

    Article  CAS  Google Scholar 

  41. Shin, H.; Eom, W.; Lee, K. H.; Jeong, W.; Kang, D. J.; Han, T. H. Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable mxene gel. ACS Nano 2021, 15, 3320–3329.

    Article  CAS  Google Scholar 

  42. Wu, Y. C.; Wei, W.; Yu, R. H.; Xia, L. X.; Hong, X. F.; Zhu, J. X.; Li, J. T.; Lv, L.; Chen, W.; Zhao, Y. et al. Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity. Adv. Funct. Mater. 2022, 32, 2110910.

    Article  CAS  Google Scholar 

  43. Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés I Xamena, F. X.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater 2015, 14, 48–55.

    Article  CAS  Google Scholar 

  44. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    Article  CAS  Google Scholar 

  45. Zhao, L.; Dong, B. L.; Li, S. Z.; Zhou, L. J.; Lai, L. F.; Wang, Z. W.; Zhao, S. L.; Han, M.; Gao, K.; Lu, M. et al. Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 2017, 11, 5800–5807.

    Article  CAS  Google Scholar 

  46. Shi, M. J.; Liu, Z.; Zhang, S.; Liang, S. C.; Jiang, Y. T.; Bai, H.; Jiang, Z. M.; Chang, J.; Feng, J.; Chen, W. S. et al. A Mott-Schottky heterogeneous layer for Li−S batteries: Enabling both high stability and commercial-sulfur utilization. Adv. Energy Mater. 2022, 12, 2103657.

    Article  CAS  Google Scholar 

  47. Sun, R.; Bai, Y.; Bai, Z.; Peng, L.; Luo, M.; Qu, M. X.; Gao, Y. C.; Wang, Z. H.; Sun, W.; Sun, K. N. Phosphorus vacancies as effective polysulfide promoter for high-energy-density lithium-sulfur batteries. Adv. Energy Mater. 2022, 12, 2102739.

    Article  CAS  Google Scholar 

  48. Ren, Y. L.; Zhai, Q. X.; Wang, B.; Hu, L. B.; Ma, Y. J.; Dai, Y. M.; Tang, S. C.; Meng, X. K. Synergistic adsorption-electrocatalysis of 2D/2D heterostructure toward high performance Li−S batteries. Chem. Eng. J. 2022, 439, 135535.

    Article  CAS  Google Scholar 

  49. Ma, F.; Srinivas, K.; Zhang, X.; Zhang, Z.; Wu, Y.; Liu, D.; Zhang, W.; Wu, Q.; Chen, Y. Mo2N quantum dots decorated N-doped graphene nanosheets as dual-functional interlayer for dendrite-free and shuttle-free lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2206113.

    Article  CAS  Google Scholar 

  50. Yao, W. Q.; Tian, C. X.; Yang, C.; Xu, J.; Meng, Y. F.; Manke, I.; Chen, N.; Wu, Z. L.; Zhan, L.; Wang, Y. L. et al. P-doped NiTe2 with Te-vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 2022, 34, 2106370.

    Article  CAS  Google Scholar 

  51. Yao, W. Q.; Xu, J.; Cao, Y. J.; Meng, Y. F.; Wu, Z. L.; Zhan, L.; Wang, Y. L.; Zhang, Y. L.; Manke, I.; Chen, N. et al. Dynamic intercalation-conversion site supported ultrathin 2D mesoporous SnO2/SnSe2 hybrid as bifunctional polysulfide immobilizer and lithium regulator for lithium-sulfur chemistry. ACS Nano 2022, 16, 10783–10797.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City (No. 520LH056) and the National Key Research and Development Program of China (No. 2022YFB3803502).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Xu or Liqiang Mai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Zhou, C., Long, J. et al. Bottom-up synthesis of 2D heterostructures enables effective polysulfides inhibition and conversion. Nano Res. 16, 8488–8496 (2023). https://doi.org/10.1007/s12274-023-5535-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5535-z

Keywords

Navigation