Skip to main content
Log in

Polarization-selective nanogold absorber by twisted stacking

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metamaterial absorbers show great promise for applications in optical manipulation, photodetection, solar energy harvesting, and photocatalysis. In this work, we present a twisted stacked metamaterial design that serves as a plasmonic perfect absorber with polarization selectivity. Leveraging effective energy localization, the metamaterial realizes a near-unity absorbance of up to 99.6% for right circularly polarized incidence and 97.2% for left circularly polarized incidence. At a longer wavelength in the visible range, the chiral metamaterial becomes more sensitive to the polarization state of the incident wave, retaining an ultrahigh absorption of light (∼94%) for only a given polarization state, that is, light in this polarization state is effectively shielded. A giant circular dichroism signal of up to 7° can be simultaneously observed. Electromagnetic field and charge distribution simulations further reveal that the ultrahigh performance of the design is attributed to the interplay between cavity coupling, magnetic resonances, and plasmonic coupling. Besides switchable and tunable chirality, the plasmonic metamaterial presents a near-perfect absorption band with tunable operational wavelengths. We envision that the high-performance chiral gold metamaterial proposed here can serve as a good candidate for light trapping, chirality sensing, polarized light detection, and polarization-enhanced photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watts, C. M.; Liu, X. L.; Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98–OP120.

    CAS  Google Scholar 

  2. Li, W. W.; Zhao, L. Y.; Dai, Z. H.; Jin, H.; Duan, F.; Liu, J. C.; Zeng, Z. H.; Zhao, J.; Zhang, Z. A temperature-activated nanocomposite metamaterial absorber with a wide tunability. Nano Res. 2018, 11, 3931–3942.

    CAS  Google Scholar 

  3. Kim, J.; Han, K.; Hahn, J. W. Selective dual-band metamaterial perfect absorber for infrared stealth technology. Sci. Rep. 2017, 7, 6740.

    Google Scholar 

  4. Xu, W. D.; Xie, L. J.; Ying, Y. B. Mechanisms and applications of terahertz metamaterial sensing: A review. Nanoscale 2017, 9, 13864–13878.

    CAS  Google Scholar 

  5. Yu, P.; Besteiro, L. V.; Huang, Y. J.; Wu, J.; Fu, L.; Tan, H. H.; Jagadish, C.; Wiederrecht, G. P.; Govorov, A. O.; Wang, Z. M. Broadband metamaterial absorbers. Adv. Opt. Mater. 2019, 7, 1800995.

    Google Scholar 

  6. You, W. B.; Pei, K.; Yang, L. T.; Li, X.; Shi, X. F.; Yu, X. F.; Guo, H. Q.; Che, R. C. In situ dynamics response mechanism of the tunable length-diameter ratio nanochains for excellent microwave absorber. Nano Res. 2020, 13, 72–78.

    CAS  Google Scholar 

  7. Feng, L.; Huo, P. C.; Liang, Y. Z.; Xu, T. Photonic metamaterial absorbers: Morphology engineering and interdisciplinary applications. Adv. Mater. 2020, 32, 1903787.

    CAS  Google Scholar 

  8. Almeida, E.; Bitton, O.; Prior, Y. Nonlinear metamaterials for holography. Nat. Commun. 2016, 7, 12533.

    CAS  Google Scholar 

  9. Karvounis, A.; Gholipour, B.; MacDonald, K. F.; Zheludev, N. I. Giant electro-optical effect through electrostriction in a nanomechanical metamaterial. Adv. Mater. 2019, 31, 1804801.

    Google Scholar 

  10. Chen, Q.; Song, S. C.; Wang, H. C.; Liang, L.; Dong, Y. J.; Wen, L. Ultra-broadband spatial light modulation with dual-resonance coupled epsilon-near-zero materials. Nano Res. 2021, 14, 2673–2680.

    CAS  Google Scholar 

  11. Hu, R.; Xi, W.; Liu, Y. D.; Tang, K. C.; Song, J. L.; Luo, X. B.; Wu, J. Q.; Qiu, C. W. Thermal camouflaging metamaterials. Mater. Today 2021, 45, 120–141.

    CAS  Google Scholar 

  12. Lee, N.; Lim, J. S.; Chang, I.; Bae, H. M.; Nam, J.; Cho, H. H. Flexible assembled metamaterials for infrared and microwave camouflage. Adv. Opt. Mater. 2022, 10, 2200448.

    CAS  Google Scholar 

  13. Feng, X. D.; Xie, X.; Pu, M. B.; Ma, X. L.; Guo, Y. H.; Li, X.; Luo, X. G. Hierarchical metamaterials for laser-infrared-microwave compatible camouflage. Opt. Express 2020, 28, 9445–9453.

    Google Scholar 

  14. Yu, B. Y.; Zhao, Y. J.; Chen, J. Q.; Ge, Y.; Chen, X. F. Broadband transparent metamaterial absorber in wireless communication band based on indium tin oxide film. Int. J. RF Microwave Comput. Aided Eng. 2019, 29, e21955.

    Google Scholar 

  15. Landy, N. I.; Sajuyigbe, S.; Mock, J. J.; Smith, D. R.; Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402.

    CAS  Google Scholar 

  16. Bhattarai, K.; Silva, S.; Song, K.; Urbas, A.; Lee, S. J.; Ku, Z.; Zhou, J. F. Metamaterial perfect absorber analyzed by a meta-cavity model consisting of multilayer metasurfaces. Sci. Rep. 2017, 7, 10569.

    Google Scholar 

  17. Hwang, J.; Oh, B.; Kim, Y.; Silva, S.; Kim, J. O.; Czaplewski, D. A.; Ryu, J. E.; Kim, E. K.; Urbas, A.; Zhou, J. F. et al. Fabry-Perot cavity resonance enabling highly polarization-sensitive double-layer gold grating. Sci. Rep. 2018, 8, 14787.

    Google Scholar 

  18. Zhang, L.; Wang, Y.; Zhou, L.; Chen, F. Tunable perfect absorber based on gold grating including phase-changing material in visible range. Appl. Phys. A 2019, 125, 368.

    CAS  Google Scholar 

  19. Zhang, N.; Ji, Z. H.; Cheney, A. R.; Song, H. M.; Ji, D. X.; Zeng, X.; Chen, B. R.; Zhang, T. M.; Cartwright, A. N.; Shi, K. B. et al. Ultra-broadband enhancement of nonlinear optical processes from randomly patterned super absorbing metasurfaces. Sci. Rep. 2017, 7, 4346.

    Google Scholar 

  20. Li, Y. Y.; Liu, Z. Q.; Zhang, H. J.; Tang, P.; Wu, B.; Liu, G. Q. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Opt. Express 2019, 27, 11809–11818.

    CAS  Google Scholar 

  21. Yong, Z. D.; Zhang, S. L.; Gong, C. S.; He, S. L. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Sci. Rep. 2016, 6, 24063.

    CAS  Google Scholar 

  22. Zhao, Y.; Huang, Q. P.; Cai, H. L.; Lin, X. X.; Lu, Y. L. A broadband and switchable VO2-based perfect absorber at the THz frequency. Opt. Commun. 2018, 426, 443–449.

    CAS  Google Scholar 

  23. Du, C.; Zhou, D.; Guo, H. H.; Pang, Y. Q.; Shi, H. Y.; Liu, W. F.; Su, J. Z.; Singh, C.; Trukhanov, S.; Trukhanov, A. et al. An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating. Nanoscale 2020, 12, 9769–9775.

    CAS  Google Scholar 

  24. Yang, Y. M.; Kelley, K.; Sachet, E.; Campione, S.; Luk, T. S.; Maria, J. P.; Sinclair, M. B.; Brener, I. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photonics 2017, 11, 390–395.

    CAS  Google Scholar 

  25. Huang, T. Y.; Tseng, C. W.; Yeh, T. T.; Yeh, T. T.; Luo, C. W.; Akalin, T.; Yen, T. J. Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process. Sci. Rep. 2015, 5, 18605.

    CAS  Google Scholar 

  26. Unal, E.; Dincer, F.; Tetik, E.; Karaaslan, M.; Bakir, M.; Sabah, C. Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications. J. Mater. Sci. Mater. Electron. 2015, 26, 9735–9740.

    CAS  Google Scholar 

  27. Xiong, X.; Jiang, S. C.; Hu, Y. H.; Peng, R. W.; Wang, M. Structured metal film as a perfect absorber. Adv. Mater. 2013, 25, 3994–4000.

    CAS  Google Scholar 

  28. Hu, E. T.; Liu, X. X.; Yao, Y.; Zang, K. Y.; Tu, Z. J.; Jiang, A. Q.; Yu, K. H.; Zheng, J. J.; Wei, W.; Zheng, Y. X. et al. Multilayered metal-dielectric film structure for highly efficient solar selective absorption. Mater. Res. Express 2018, 5, 066428.

    Google Scholar 

  29. Koya, A. N.; Cunha, J.; Guo, T. L.; Toma, A.; Garoli, D.; Wang, T.; Juodkazis, S.; Cojoc, D.; Proietti Zaccaria, R. Novel plasmonic nanocavities for optical trapping-assisted biosensing applications. Adv. Opt. Mater. 2020, 8, 1901481.

    CAS  Google Scholar 

  30. Baranov, D. G.; Krasnok, A.; Shegai, T.; Alù, A.; Chong, Y. D. Coherent perfect absorbers: Linear control of light with light. Nat. Rev. Mater. 2017, 2, 17064.

    CAS  Google Scholar 

  31. Lu, X. Y.; Lin, J. T. Field enhancement of a metal grating with nanocavities and its sensing applications. J. Opt. 2017, 19, 055004.

    Google Scholar 

  32. Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348.

    CAS  Google Scholar 

  33. Wang, Y.; Zhang, X. P. Ultrafast optical switching based on mutually enhanced resonance modes in gold nanowire gratings. Nanoscale 2019, 11, 17807–17814.

    CAS  Google Scholar 

  34. Bochenkov, V. E.; Shabatina, T. I. Chiral plasmonic biosensors. Biosensors (Basel) 2018, 8, 120.

    CAS  Google Scholar 

  35. Liu, G. S.; Xiong, X.; Hu, S. Q.; Shi, W. C.; Chen, Y. F.; Zhu, W. G.; Zheng, H. D.; Yu, J. H.; Azeman, N. H.; Luo, Y. H. et al. Photonic cavity enhanced high-performance surface plasmon resonance biosensor. Photonics Res. 2020, 8, 448–456.

    CAS  Google Scholar 

  36. Zu, S.; Han, T. Y.; Jiang, M. L.; Liu, Z. X.; Jiang, Q.; Lin, F.; Zhu, X.; Fang, Z. Y. Imaging of plasmonic chiral radiative local density of states with cathodoluminescence nanoscopy. Nano Lett. 2019, 19, 775–780.

    CAS  Google Scholar 

  37. Qu, G. Y.; Yang, W. H.; Song, Q. H.; Liu, Y. L.; Qiu, C. W.; Han, J. C.; Tsai, D. P.; Xiao, S. M. Reprogrammable meta-hologram for optical encryption. Nat. Commun. 2020, 11, 5484.

    CAS  Google Scholar 

  38. Kuwata-Gonokami, M.; Saito, N.; Ino, Y.; Kauranen, M.; Jefimovs, K.; Vallius, T.; Turunen, J.; Svirko, Y. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 2005, 95, 227401.

    Google Scholar 

  39. Alali, F.; Kim, Y. H.; Baev, A.; Furlani, E. P. Plasmon-enhanced metasurfaces for controlling optical polarization. ACS Photonics 2014, 1, 507–515.

    CAS  Google Scholar 

  40. Ouyang, L. X.; Wang, W.; Rosenmann, D.; Czaplewski, D. A.; Gao, J.; Yang, X. D. Near-infrared chiral plasmonic metasurface absorbers. Opt. Express 2018, 26, 31484–31489.

    CAS  Google Scholar 

  41. Mahmud, S.; Rosenmann, D.; Czaplewski, D. A.; Gao, J.; Yang, X. D. Chiral plasmonic metasurface absorbers in the mid-infrared wavelength range. Opt. Lett. 2020, 45, 5372–5375.

    Google Scholar 

  42. Wu, Z. L.; Zheng, Y. B. Moiré chiral metamaterials. Adv. Opt. Mater. 2017, 5, 1700034.

    Google Scholar 

  43. Kurokawa, Y.; Miyazaki, H. T. Metal-insulator-metal plasmon nanocavities: Analysis of optical properties. Phys. Rev. B 2007, 75, 035411.

    Google Scholar 

  44. Ameling, R.; Giessen, H. Cavity plasmonics: Large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity. Nano Lett. 2010, 10, 4394–4398.

    CAS  Google Scholar 

  45. Qu, Y.; Zhang, Y.; Wang, F.; Li, H.; Ullah, H.; Aba, T.; Wang, Y. K.; Fu, T.; Zhang, Z. Y. A general mechanism for achieving circular dichroism in a chiral plasmonic system. Ann. Phys. 2018, 530, 1800142.

    Google Scholar 

  46. Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 2004, 4, 899–903.

    CAS  Google Scholar 

  47. Wang, Y. K.; Wen, X. J.; Qu, Y.; Fu, T.; Zhang, Z. Y. Direct and indirect coupling mechanisms in a chiral plasmonic system. J. Phys. D Appl. Phys. 2016, 49, 405104.

    Google Scholar 

  48. Wu, P. H.; Chen, Z. Q.; Jile, H.; Zhang, C. F.; Xu, D. Y.; Lv, L. An infrared perfect absorber based on metal-dielectric-metal multilayer films with nanocircle holes arrays. Results Phys. 2020, 16, 102952.

    Google Scholar 

  49. Li, G. Z.; Shen, Y.; Xiao, G. H.; Jin, C. J. Double-layered metal grating for high-performance refractive index sensing. Opt. Express 2015, 23, 8995–9003.

    CAS  Google Scholar 

  50. Kim, D.; Yu, J.; Hwang, I.; Park, S.; Demmerle, F.; Boehm, G.; Amann, M. C.; Belkin, M. A.; Lee, J. Giant nonlinear circular dichroism from intersubband polaritonic metasurfaces. Nano Lett. 2020, 20, 8032–8039.

    CAS  Google Scholar 

  51. Kang, L.; Wang, C. Y.; Guo, X. X.; Ni, X. J.; Liu, Z. W.; Werner, D. H. Nonlinear chiral meta-mirrors: Enabling technology for ultrafast switching of light polarization. Nano Lett. 2020, 20, 2047–2055.

    CAS  Google Scholar 

  52. Liu, T. J.; Besteiro, L. V.; Liedl, T.; Correa-Duarte, M. A.; Wang, Z. M.; Govorov, A. O. Chiral plasmonic nanocrystals for generation of hot electrons: Toward polarization-sensitive photochemistry. Nano Lett. 2019, 19, 1395–1407.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21975060, X. L. W.) and Youth Innovation Promotion Association CAS (No. 2019039, X. L. W.). This work was also supported by financial support from the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000, Z. Y. T.), National Key Basic Research Program of China (No. 2016YFA0200700, Z. Y. T.), National Natural Science Foundation of China (Nos. 92056204, 21890381, and 21721002, Z. Y. T.), and Frontier Science Key Project of Chinese Academy of Sciences (No. QYZDJ-SSW-SLH038, Z. Y. T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Han, Z., Sun, J. et al. Polarization-selective nanogold absorber by twisted stacking. Nano Res. 16, 10392–10400 (2023). https://doi.org/10.1007/s12274-023-5518-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5518-0

Keywords

Navigation