Skip to main content
Log in

A generalizable strategy based on the rule of “like dissolves like” to construct porous liquids with low viscosity for CO2 capture

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Porous liquids (PLs), an emerging porous material with permanent cavities, have attracted extensive attention in recent years. However, the current construction methods are complicated and resulting PLs possess high viscosity values, which cannot meet the requirements of practical industrial applications. Herein, we demonstrate a generalizable and simple strategy to prepare type III PLs with low viscosity based on the rule of “like dissolves like”. Specifically, the monoglycidyl ether terminated polydimethylsiloxane (denoted by E-PDMS) is attached to the surface of Universitetet i Oslo (UiO)-66-NH2 via covalent linkage, constructing the pore generator (UiO-66-NH2-E-PDMS, denoted by P-UiO-66). Then, P-UiO-66 is dispersed into different types and amounts of sterically hindered solvents (PDMS400 or PDMS6000), obtaining a series of type III PLs (denoted by P-UiO-66-PLs) with permanent cavities and low viscosities. The gas sorption-desorption test shows that P-UiO-66-PLs have an enormous potential for CO2/N2 selective separation. Besides, the porosity of P-UiO-66-PLs and the CO2 sorption mechanism are demonstrated by molecular simulation. Furthermore, the generality of the synthesis strategy is confirmed by the successful construction of PLs using two other amino-metal-organic frameworks (MOFs) (MIL-53(Al)-NH2 and MIL-88B(Fe)-NH2). Importantly, it’s worth noting that the strategy based on the rule of “like dissolves like” sheds light on the preparation of other types of PLs for task-specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639.

    CAS  Google Scholar 

  2. Harper, A. B.; Powell, T.; Cox, P. M.; House, J.; Huntingford, C.; Lenton, T. M.; Sitch, S.; Burke, E.; Chadburn, S. E.; Collins, W. J. et al. Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nat. Commun. 2018, 9, 2938.

    Google Scholar 

  3. Seneviratne, S. I.; Rogelj, J.; Séférian, R.; Wartenburger, R.; Allen, M. R.; Cain, M.; Millar, R. J.; Ebi, K. L.; Ellis, N.; Hoegh-Guldberg, O. et al. The many possible climates from the Paris Agreement’s aim of 1.5 °C warming. Nature 2018, 558, 41–49.

    CAS  Google Scholar 

  4. Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97.

    CAS  Google Scholar 

  5. Solomatova, N. V.; Caracas, R.; Manning, C. E. Carbon sequestration during core formation implied by complex carbon polymerization. Nat. Commun. 2019, 10, 789.

    CAS  Google Scholar 

  6. Kim, E. J.; Siegelman, R. L.; Jiang, H. Z. H.; Forse, A. C.; Lee, J. H.; Martell, J. D.; Milner, P. J.; Falkowski, J. M.; Neaton, J. B.; Reimer, J. A. et al. Cooperative carbon capture and steam regeneration with tetraamine-appended metal-organic frameworks. Science 2020, 369, 392–396.

    CAS  Google Scholar 

  7. Boyd, P. G.; Chidambaram, A.; García-Díez, E.; Ireland, C. P.; Daff, T. D.; Bounds, R.; Gładysiak, A.; Schouwink, P.; Moosavi, S. M.; Maroto-Valer, M. M. et al. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture. Nature 2019, 576, 253–256.

    CAS  Google Scholar 

  8. Yu, J. M.; Xie, L. H.; Li, J. R.; Ma, Y. G.; Seminario, J. M.; Balbuena, P. B. CO2 capture and separations using MOFs: Computational and experimental studies. Chem. Rev. 2017, 117, 9674–9754.

    CAS  Google Scholar 

  9. Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045.

    CAS  Google Scholar 

  10. Li, Y.; Wang, Y. T.; Fan, W. D.; Sun, D. F. Flexible metal-organic frameworks for gas storage and separation. Dalton Trans. 2022, 51, 4608–4618.

    CAS  Google Scholar 

  11. Wang, Y. T.; Fu, M. Y.; Zhou, S. N.; Liu, H. Y.; Wang, X. K.; Fan, W. D.; Liu, Z. N.; Wang, Z. K.; Li, D. C.; Hao, H. G. et al. Guest-molecule-induced self-adaptive pore engineering facilitates purification of ethylene from ternary mixture. Chem 2022, 8, 3263–3274.

    CAS  Google Scholar 

  12. Fan, W. D.; Ying, Y. P.; Peh, S. B.; Yuan, H. Y.; Yang, Z. Q.; Yuan, Y. D.; Shi, D. C.; Yu, X.; Kang, C. J.; Zhao, D. Multivariate polycrystalline metal-organic framework membranes for CO2/CH4 separation. J. Am. Chem. Soc. 2021, 143, 17716–17723.

    CAS  Google Scholar 

  13. Fan, W. D.; Yuan, S.; Wang, W. J.; Feng, L.; Liu, X. P.; Zhang, X. R.; Wang, X.; Kang, Z. X.; Dai, F. N.; Yuan, D. Q. et al. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation. J. Am. Chem. Soc. 2020, 142, 8728–8737.

    Google Scholar 

  14. Fan, W. D.; Wang, X.; Zhang, X. R.; Liu, X. P.; Wang, Y. T.; Kang, Z. X.; Dai, F. N.; Xu, B.; Wang, R. M.; Sun, D. F. Fine-tuning the pore environment of the microporous Cu-MOF for high propylene storage and efficient separation of light hydrocarbons. ACS Cent. Sci. 2019, 5, 1261–1268.

    CAS  Google Scholar 

  15. Heldebrant, D. J.; Koech, P. K.; Glezakou, V. A.; Rousseau, R.; Malhotra, D.; Cantu, D. C. Water-lean solvents for post-combustion CO2 capture: Fundamentals, uncertainties, opportunities, and outlook. Chem. Rev. 2017, 117, 9594–9624.

    CAS  Google Scholar 

  16. Zeng, S. J.; Zhang, X. P.; Bai, L.; Zhang, X. C.; Wang, H.; Wang, J. J.; Bao, D.; Li, M. D.; Liu, X. Y.; Zhang, S. J. Ionic-liquid-based CO2 capture systems: Structure, interaction and process. Chem. Rev. 2017, 117, 9625–9673.

    CAS  Google Scholar 

  17. Zhao, M.; Minett, A. I.; Harris, A. T. A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2. Energy Environ. Sci. 2013, 6, 25–40.

    CAS  Google Scholar 

  18. Yu, C. H.; Huang, C. H.; Tan, C. S. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769.

    CAS  Google Scholar 

  19. O’Reilly, N.; Giri, N.; James, S. L. Porous liquids. Chem. —Eur. J. 2007, 13, 3020–3025.

    Google Scholar 

  20. Wang, D. C.; Xin, Y. Y.; Yao, D. D.; Li, X. Q.; Ning, H. L.; Zhang, H. M.; Wang, Y. D.; Ju, X. Q.; He, Z. J.; Yang, Z. Y. et al. Shining light on porous liquids: From fundamentals to syntheses, applications and future challenges. Adv. Funct. Mater. 2022, 32, 2104162.

    CAS  Google Scholar 

  21. Fulvio, P. F.; Dai, S. Porous liquids: The next frontier. Chem 2020, 6, 3263–3287.

    CAS  Google Scholar 

  22. Avila, J.; Lepre, L. F.; Santini, C. C.; Tiano, M.; Denis-Quanquin, S.; Chung Szeto, K.; Padua, A. A. H.; Costa Gomes, M. High-performance porous ionic liquids for low-pressure CO2 capture. Angew. Chem., Int. Ed. 2021, 60, 12876–12882.

    CAS  Google Scholar 

  23. Yang, M. K.; Wang, H. S.; Zuo, J. Y.; Deng, C.; Liu, B.; Chai, L. Y.; Li, K.; Xiao, H.; Xiao, P.; Wang, X. H. et al. Efficient separation of butane isomers via ZIF-8 slurry on laboratory-and pilot-scale. Nat. Commun. 2022, 13, 4792.

    CAS  Google Scholar 

  24. Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Ning, H. L.; Wang, Y. D.; Yao, D. D.; Zheng, Y. P.; Meng, Z. Y.; Yang, Z. Y.; Pan, Y. T. et al. Transforming metal-organic frameworks into porous liquids via a covalent linkage strategy for CO2 capture. ACS Appl. Mater. Interfaces 2021, 13, 2600–2609.

    CAS  Google Scholar 

  25. Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Wang, F.; Wang, Y. D.; Zhang, W. R.; Zheng, Y. P.; Yao, D. D.; Yang, Z. Y.; Lei, X. F. A universal approach to turn UiO-66 into type 1 porous liquids via post-synthetic modification with corona-canopy species for CO2 capture. Chem. Eng. J. 2021, 416, 127625.

    CAS  Google Scholar 

  26. Xin, Y. Y.; Wang, D. C.; Yao, D. D.; Ning, H. L.; Li, X. Q.; Ju, X. Q.; Zhang, Y. C.; Yang, Z. Y.; Xu, Y. H.; Zheng, Y. P. Post-synthetic modification of UiO-66-OH toward porous liquids for CO2 capture. New J. Chem. 2022, 46, 2189–2197.

    CAS  Google Scholar 

  27. Liu, H.; Liu, B.; Lin, L. C.; Chen, G. J.; Wu, Y. Q.; Wang, J.; Gao, X. T.; Lv, Y. N.; Pan, Y.; Zhang, X. X. et al. A hybrid absorptionadsorption method to efficiently capture carbon. Nat. Commun. 2014, 5, 5147.

    CAS  Google Scholar 

  28. Chen, H.; Yang, Z. Z.; Peng, H. G.; Jie, K. C.; Li, P. P.; Ding, S. M.; Guo, W.; Suo, X.; Liu, J. X.; Yan, R. et al. A bifunctional zeolitic porous liquid with incompatible Lewis pairs for antagonistic cascade catalysis. Chem 2021, 7, 3340–3358.

    CAS  Google Scholar 

  29. Zhang, Z. X.; Yang, B. L.; Zhang, B. J.; Cui, M. F.; Tang, J. H.; Qiao, X. Type II porous ionic liquid based on metal-organic cages that enables l-tryptophan identification. Nat. Commun. 2022, 13, 2353.

    CAS  Google Scholar 

  30. Egleston, B. D.; Mroz, A.; Jelfs, K. E.; Greenaway, R. L. Porous liquids—The future is looking emptier. Chem. Sci. 2022, 13, 5042–5054.

    CAS  Google Scholar 

  31. Mahdavi, H.; Smith, S. J. D.; Mulet, X.; Hill, M. R. Practical considerations in the design and use of porous liquids. Mater. Horiz. 2022, 9, 1577–1601.

    CAS  Google Scholar 

  32. Bennett, T. D.; Coudert, F. X.; James, S. L.; Cooper, A. I. The changing state of porous materials. Nat. Mater. 2021, 20, 1179–1187.

    CAS  Google Scholar 

  33. Yin, J.; Zhang, J. R.; Fu, W. D.; Ran, H. S.; Zhang, Y.; Zhang, M.; Jiang, W.; Li, H. P.; Zhu, W. S.; Li, H. M. Porous liquids for gas capture, separation, and conversion: Narrowing the knowing-doing gap. Sep. Purif. Technol. 2022, 297, 121456.

    CAS  Google Scholar 

  34. Zhang, J. S.; Chai, S. H.; Qiao, Z. A.; Mahurin, S. M.; Chen, J. H.; Fang, Y. X.; Wan, S.; Nelson, K.; Zhang, P. F.; Dai, S. Porous liquids: A promising class of media for gas separation. Angew. Chem., Int. Ed. 2015, 54, 932–936.

    CAS  Google Scholar 

  35. Li, P. P.; Wang, D. C.; Zhang, L.; Liu, C.; Wu, F.; Wang, Y. K.; Wang, Z.; Zhao, Z. H.; Wu, W. W.; Liang, Y. P. et al. An in situ coupling strategy toward porous carbon liquid with permanent porosity. Small 2021, 17, 2006687.

    CAS  Google Scholar 

  36. Li, P. P.; Schott, J. A.; Zhang, J. S.; Mahurin, S. M.; Sheng, Y. J.; Qiao, Z. A.; Hu, X. X.; Cui, G. K.; Yao, D. D.; Brown, S. et al. Electrostatic-assisted liquefaction of porous carbons. Angew. Chem., Int. Ed. 2017, 56, 14958–14962.

    CAS  Google Scholar 

  37. Su, F. F.; Li, X. Q.; Wang, Y. D.; He, Z. J.; Fan, L.; Wang, H. N.; Xie, J. L.; Zheng, Y. P.; Yao, D. D. Constructing hollow carbon sphere liquid with permanent porosity via electrostatic modification of polyionic liquids for CO2 gas adsorption. Sep. Purif. Technol. 2021, 277, 119410.

    CAS  Google Scholar 

  38. Li, X. Q.; Wang, D. C.; He, Z. J.; Su, F. F.; Zhang, N.; Xin, Y. Y.; Wang, H. N.; Tian, X. L.; Zheng, Y. P.; Yao, D. D. et al. Zeolitic imidazolate frameworks-based porous liquids with low viscosity for CO2 and toluene uptakes. Chem. Eng. J. 2021, 417, 129239.

    CAS  Google Scholar 

  39. Li, X. Q.; Yao, D. D.; Wang, D. C.; He, Z. J.; Tian, X. L.; Xin, Y. Y.; Su, F. F.; Wang, H. N.; Zhang, J.; Li, X. Y. et al. Amino-functionalized ZIFs-based porous liquids with low viscosity for efficient low-pressure CO2 capture and CO2/N2 separation. Chem. Eng. J. 2022, 429, 132296.

    CAS  Google Scholar 

  40. He, S. F.; Chen, L. H.; Cui, J.; Yuan, B.; Wang, H. L.; Wang, F.; Yu, Y.; Lee, Y.; Li, T. General way to construct micro- and mesoporous metal-organic framework-based porous liquids. J. Am. Chem. Soc. 2019, 141, 19708–19714.

    CAS  Google Scholar 

  41. Li, C. E.; Liu, J. H.; Zhang, K. X.; Zhang, S. W.; Lee, Y.; Li, T. Coating the right polymer: Achieving ideal metal-organic framework particle dispersibility in polymer matrixes using a coordinative crosslinking surface modification method. Angew. Chem., Int. Ed. 2021, 60, 14138–14145.

    CAS  Google Scholar 

  42. Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem. —Eur. J. 2011, 17, 6643–6651.

    CAS  Google Scholar 

  43. Connolly, M. L. Computation of molecular volume. J. Am. Chem. Soc. 1985, 107, 1118–1124.

    CAS  Google Scholar 

  44. Xiao, J. D.; Shang, Q. C.; Xiong, Y. J.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: The platinum location matters. Angew. Chem., Int. Ed. 2016, 55, 9389–9393.

    CAS  Google Scholar 

  45. Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640.

    CAS  Google Scholar 

  46. Kandiah, M.; Usseglio, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P.; Tilset, M. Post-synthetic modification of the metal-organic framework compound UiO-66. J. Mater. Chem. 2010, 20, 9848–9851.

    CAS  Google Scholar 

  47. Lin, K. Y. A.; Liu, Y. T.; Chen, S. Y. Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies. J. Colloid Interface Sci. 2016, 461, 79–87.

    CAS  Google Scholar 

  48. Guan, T.; Li, X. D.; Fang, W. K.; Wu, D. Y. Efficient removal of phosphate from acidified urine using UiO-66 metal-organic frameworks with varying functional groups. Appl. Surf. Sci. 2020, 501, 144074.

    CAS  Google Scholar 

  49. Vellingiri, K.; Deep, A.; Kim, K. H.; Boukhvalov, D. W.; Kumar, P.; Yao, Q. The sensitive detection of formaldehyde in aqueous media using zirconium-based metal organic frameworks. Sens. Actuators B:Chem. 2017, 241, 938–948.

    CAS  Google Scholar 

  50. Yang, J.; Dai, Y.; Zhu, X. Y.; Wang, Z.; Li, Y. S.; Zhuang, Q. X.; Shi, J. L.; Gu, J. L. Metal-organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. J. Mater. Chem. A 2015, 3, 7445–7452.

    CAS  Google Scholar 

  51. Jie, K. C.; Onishi, N.; Schott, J. A.; Popovs, I.; Jiang, D. E.; Mahurin, S.; Dai, S. Transforming porous organic cages into porous ionic liquids via a supramolecular complexation strategy. Angew. Chem., Int. Ed. 2020, 59, 2268–2272.

    CAS  Google Scholar 

  52. Zhao, X. M.; Yuan, Y. H.; Li, P. P.; Song, Z. J.; Ma, C. X.; Pan, D.; Wu, S. D.; Ding, T.; Guo, Z. H.; Wang, N. A polyether amine modified metal organic framework enhanced the CO2 adsorption capacity of room temperature porous liquids. Chem. Commun. 2019, 55, 13179–13182.

    CAS  Google Scholar 

  53. Couck, S.; Denayer, J. F. M.; Baron, G. V.; Rémy, T.; Gascon, J.; Kapteijn, F. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. J. Am. Chem. Soc. 2009, 131, 6326–6327.

    CAS  Google Scholar 

  54. Ahnfeldt, T.; Gunzelmann, D.; Loiseau, T.; Hirsemann, D.; Senker, J.; Férey, G.; Stock, N. Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. Inorg. Chem. 2009, 48, 3057–3064.

    CAS  Google Scholar 

  55. Shi, L.; Wang, T.; Zhang, H. B.; Chang, K.; Meng, X. G.; Liu, H. M.; Ye, J. H. An amine-functionalized Iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Adv. Sci. 2015, 2, 1500006.

    Google Scholar 

  56. Ma, M. Y.; Bétard, A.; Weber, I.; Al-Hokbany, N. S.; Fischer, R. A.; Metzler-Nolte, N. Iron-based metal-organic frameworks MIL-88B and NH2-MIL-88B: High quality microwave synthesis and solvent-induced lattice “breathing”. Cryst. Growth Des. 2013, 13, 2286–2291.

    CAS  Google Scholar 

  57. Horcajada, P.; Salles, F.; Wuttke, S.; Devic, T.; Heurtaux, D.; Maurin, G.; Vimont, A.; Daturi, M.; David, O.; Magnier, E. et al. How linker’s modification controls swelling properties of highly flexible Iron(III) dicarboxylates MIL-88. J. Am. Chem. Soc. 2011, 133, 17839–17847.

    CAS  Google Scholar 

  58. Yuan, R. R.; Yue, C. L.; Qiu, J. L.; Liu, F. Q.; Li, A. M. Highly efficient sunlight-driven reduction of Cr(VI) by TiO2@NH2-MIL-88B(Fe) heterostructures under neutral conditions. Appl. Catal. B:Environ. 2019, 251, 229–239.

    CAS  Google Scholar 

  59. Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, G. K. H.; Boyd, P. G.; Alavi, S.; Woo, T. K. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 2010, 330, 650–653.

    CAS  Google Scholar 

  60. Yin, J.; Zhang, J. R.; Wang, C.; Lv, N. X.; Jiang, W.; Liu, H.; Li, H. P.; Zhu, W. S.; Li, H. M.; Ji, H. B. Theoretical insights into CO2/N2 selectivity of the porous ionic liquids constructed by ion-dipole interactions. J. Mol. Liq. 2021, 344, 117676.

    CAS  Google Scholar 

  61. Yin, J.; Fu, W. D.; Zhang, J. R.; Ran, H. S.; Lv, N. X.; Chao, Y. H.; Li, H. P.; Zhu, W. S.; Liu, H.; Li, H. M. Unraveling the mechanism of CO2 capture and separation by porous liquids. RSC Adv. 2020, 10, 42706–42717.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Aeronautical Science Foundation of China (No. 2018ZF53065), the Key Project of Shaanxi Provincial Natural Science Foundation (No. 2021JZ-09), the National Undergraduate Training Program for Innovation and Entrepreneurship (No. 201910699113), and the Shaanxi Province Science Foundation for Youths (No. 2023-JC-QN-0146).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dechao Wang, Dongdong Yao or Yaping Zheng.

Electronic supplementary material

12274_2023_5516_MOESM1_ESM.pdf

A generalizable strategy based on the rule of “like dissolves like” to construct porous liquids with low viscosity for CO2 capture

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Y., Ning, H., Wang, D. et al. A generalizable strategy based on the rule of “like dissolves like” to construct porous liquids with low viscosity for CO2 capture. Nano Res. 16, 10369–10380 (2023). https://doi.org/10.1007/s12274-023-5516-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5516-2

Keywords

Navigation