Skip to main content
Log in

One-step, in situ formation of WN-W2C heterojunctions implanted on N doped carbon nanorods as efficient oxygen reduction catalyst for metal-air battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transition metal nitrides and carbides have attracted intensive attentions in metal-air battery application due to their metallic electron transport behavior and high chemical stability toward the oxygen reduction reaction (ORR). Herein, the polyoxometalate@polyaniline composite derived WN-W2C heterostructured composite (WN-W2C@pDC) has been fabricated through an in situ nitriding-carbonization strategy, with WN-W2C nanoparticles implanted on N doped carbon nanorods. As-fabricated WN-W2C@pDC demonstrates prominent electrocatalytic performance towards ORR and excellent cycling stability in metal-air battery, which possesses positive half-wave potential and large diffusion limiting current density (0.81 V and 5.8 mA·cm−2). Moreover, it demonstrates high peak power density of 157.4 mW·cm−2 as Al-air primary cathode and excellent stability at the discharge—charge test (> 500 h) of Zn-air secondary battery. The excellent activity and durability of WN-W2C@pDC catalyst should be attributed to the combined effect of intimate WN-W2C heterointerfaces, unique embedded nanoparticles structure, and excellent electrical media of N doped carbon, confirmed by a series of contrast experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, X. N.; Cheng, Z. X.; Wang, X. L. Understanding the mechanism of the oxygen evolution reaction with consideration of spin. Electrochem. Energy Rev. 2021, 4, 136–145.

    CAS  Google Scholar 

  2. Chen, J. W.; Chen, H. X.; Yu, T. W.; Li, R. C.; Wang, Y. S.; Shao, Z. P.; Song, S. Q. Recent advances in the understanding of the surface reconstruction of oxygen evolution electrocatalysts and materials development. Electrochem. Energy Rev. 2021, 4, 566–600.

    CAS  Google Scholar 

  3. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  4. Liu, Y. S.; Chen, Z. C.; Li, Z. X.; Zhao, N.; Xie, Y. L.; Du, Y.; Xuan, J. N.; Xiong, D. B.; Zhou, J. Q.; Cai, L. et al. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy 2022, 99, 107325.

    CAS  Google Scholar 

  5. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  6. Yu, M. H.; Wang, Z. K.; Hou, C.; Wang, Z. L.; Liang, C. L.; Zhao, C. Y.; Tong, Y. X.; Lu, X. H.; Yang, S. H. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1602868.

    Google Scholar 

  7. Lu, X. F.; Chen, Y.; Wang, S. B.; Gao, S. Y.; Lou, X. W. Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv. Mater. 2019, 31, 1902339.

    Google Scholar 

  8. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202212335.

  9. Zhang, Q.; Luo, F.; Long, X.; Yu, X. X.; Qu, K. G.; Yang, Z. H. N, P doped carbon nanotubes confined WN-Ni Mott—Schottky heterogeneous electrocatalyst for water splitting and rechargeable zinc-air batteries. Appl. Catal. B: Environ. 2021, 298, 120511.

    CAS  Google Scholar 

  10. Liang, S.; Zou, L. C.; Zheng, L. J.; Li, F.; Wang, X. X.; Song, L. N.; Xu, J. J. Highly stable Co single atom confined in hierarchical carbon molecular sieve as efficient electrocatalysts in metal-air batteries. Adv. Energy Mater. 2022, 12, 2103097.

    CAS  Google Scholar 

  11. Yu, H.; Luo, Y. H.; Wu, C. C.; Jia, A. Z.; Wang, Y. J.; Wu, L. L.; Li, J. D. Conductive tungsten oxynitride supported highly dispersed cobalt nanoclusters for enhanced oxygen reduction. Chem. Eng. J. 2022, 449, 137542.

    CAS  Google Scholar 

  12. Yang, X. X.; Zheng, X. C.; Li, H. X.; Luo, B. C.; He, Y. K.; Yao, Y.; Zhou, H. H.; Yan, Z. H.; Kuang, Y. F.; Huang, Z. Y. Non-noble-metal catalyst and Zn/graphene film for low-cost and ultra-long-durability solid-state Zn-air batteries in harsh electrolytes. Adv. Funct. Mater. 2022, 32, 2200397.

    CAS  Google Scholar 

  13. Chen, D. F.; Pan, L.; Pei, P. C.; Song, X.; Ren, P.; Zhang, L. Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives. Nano Res. 2022, 15, 5038–5063.

    CAS  Google Scholar 

  14. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    CAS  Google Scholar 

  15. Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

    Google Scholar 

  16. Wang, Z.; Jin, X. Y.; Zhu, C.; Liu, Y. P.; Tan, H.; Ku, R. Q.; Zhang, Y. Q.; Zhou, L. J.; Liu, Z.; Hwang, S. J. et al. Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 2021, 33, 2104718.

    CAS  Google Scholar 

  17. Wu, L. B.; Zhang, F. H.; Song, S. W.; Ning, M. H.; Zhu, Q.; Zhou, J. Q.; Gao, G. H.; Chen, Z. Y.; Zhou, Q. C.; Xing, X. X. et al. Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanoparticle-structured Ni-MoN catalyst with fast water-dissociation kinetics. Adv. Mater. 2022, 34, 2201774.

    CAS  Google Scholar 

  18. Wu, X. L.; Han, G. S.; Wen, H.; Liu, Y. Y.; Han, L.; Cui, X. Y.; Kou, J. J.; Li, B. J.; Jiang, J. C. Co2N nanoparticles anchored on N-doped active carbon as catalyst for oxygen reduction reaction in zinc-air battery. Energy Environ. Mater. 2022, 5, 935–943.

    CAS  Google Scholar 

  19. Das, D.; Das, A.; Reghunath, M.; Nanda, K. K. Phosphine-free avenue to Co2P nanoparticle encapsulated N, P co-doped CNTs: A novel non-enzymatic glucose sensor and an efficient electrocatalyst for oxygen evolution reaction. Green Chem. 2017, 19, 1327–1335.

    CAS  Google Scholar 

  20. Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

    CAS  Google Scholar 

  21. Xie, Y.; Zhang, Y.; Zhang, M. R.; Zhang, Y.; Liu, J. Q.; Zhou, Q.; Wang, W. F.; Cui, J. W.; Wang, Y.; Chen, Y. et al. Synthesis of W2N nanorods-graphene hybrid structure with enhanced oxygen reduction reaction performance. Int. J. Hydrogen Energy 2017, 42, 25924–25932.

    CAS  Google Scholar 

  22. Wang, R.; Yang, H. C.; Lu, N. D.; Lei, S. L.; Jia, D. L.; Wang, Z. X.; Liu, Z. H.; Wu, X. G.; Zheng, H. Z.; Ali, S. et al. Precise identification of active sites of a high bifunctional performance 3D Co/N-C catalyst in zinc-air batteries. Chem. Eng. J. 2022, 433, 134500.

    CAS  Google Scholar 

  23. Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

    CAS  Google Scholar 

  24. Ma, Y. Y.; Yu, Y.; Wang, J. H.; Lipton, J.; Tan, H. N.; Zheng, L. R.; Yang, T.; Liu, Z. L.; Loh, X. J.; Pennycook, S. J. et al. Localizing tungsten single atoms around tungsten nitride nanoparticles for efficient oxygen reduction electrocatalysis in metal-air batteries. Adv. Sci. 2022, 9, 2105192.

    CAS  Google Scholar 

  25. Sun, J. W.; Xu, W. J.; Lv, C. X.; Zhang, L. J.; Shakouri, M.; Peng, Y. H.; Wang, Q. Q.; Yang, X. F.; Yuan, D.; Huang, M. H. et al. Co/MoN hetero-interface nanoflake array with enhanced water dissociation capability achieves the Pt-like hydrogen evolution catalytic performance. Appl. Catal. B: Environ. 2021, 286, 119882.

    CAS  Google Scholar 

  26. Ma, F.; Srinivas, K.; Zhang, X. J.; Zhang, Z. H.; Wu, Y.; Liu, D. W.; Zhang, W. L.; Wu, Q.; Chen, Y. F. Mo2N quantum dots decorated N-doped graphene nanosheets as dual-functional interlayer for dendrite-free and shuttle-free lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2206113.

    CAS  Google Scholar 

  27. Zang, Y.; Yang, B. P.; Li, A.; Liao, C. G.; Chen, G.; Liu, M.; Liu, X. H.; Ma, R. Z.; Zhang, N. Tuning interfacial active sites over porous Mo2N-supported cobalt sulfides for efficient hydrogen evolution reactions in acid and alkaline electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 41573–41583.

    CAS  Google Scholar 

  28. Jamil, R.; Ali, R.; Loomba, S.; Xian, J.; Yousaf, M.; Khan, K.; Shabbir, B.; McConville, C. F.; Mahmood, A.; Mahmood, N. The role of nitrogen in transition-metal nitrides in electrochemical water splitting. Chem Catal. 2021, 1, 802–854.

    CAS  Google Scholar 

  29. Chen, J.; Pan, A. Q.; Zhang, W. C.; Cao, X. X.; Lu, R.; Liang, S. Q.; Cao, G. Z. Melamine-assisted synthesis of ultrafine Mo2C/Mo2N@N-doped carbon nanofibers for enhanced alkaline hydrogen evolution reaction activity. Sci. China Mater. 2021, 64, 1150–1158.

    CAS  Google Scholar 

  30. Kumar, R.; Ahmed, Z.; Kaur, H.; Bera, C.; Bagchi, V. Probing into the effect of heterojunctions between Cu/Mo2C/Mo2N on HER performance. Catal. Sci. Technol. 2020, 10, 2213–2220.

    CAS  Google Scholar 

  31. Wang, Z. H.; Wang, X. F.; Tan, Z.; Song, X. Z. Polyoxometalate/metal-organic framework hybrids and their derivatives for hydrogen and oxygen evolution electrocatalysis. Mater. Today Energy 2021, 19, 100618.

    CAS  Google Scholar 

  32. Bai, Q.; Shen, F. C.; Li, S. L.; Liu, J.; Dong, L. Z.; Wang, Z. M.; Lan, Y. Q. Cobalt@nitrogen-doped porous carbon fiber derived from the electrospun fiber of bimetal-organic framework for highly active oxygen reduction. Small Methods 2018, 2, 1800049.

    Google Scholar 

  33. Shao, M. M.; Chen, W. Z.; Ding, S. J.; Lo, K. H.; Zhong, X. W.; Yao, L. M.; Ip, W. F.; Xu, B. M.; Wang, X. S.; Pan, H. WXy/g-C3N4 (WXy = W2C, WS2, or W2N) composites for highly efficient photocatalytic water splitting. ChemSusChem 2019, 12, 3355–3362.

    CAS  Google Scholar 

  34. Bhadra, B. N.; Mondol, M. M. H.; Jhung, S. H. Enhanced oxidative desulfurization of liquid model fuel under microwave irradiation over W2N@C catalyst nanoarchitectonics. Chem. Eng. J. 2022, 440, 135841.

    CAS  Google Scholar 

  35. Liu, D. L.; Xu, Y.; Sun, M. Y.; Huang, Y.; Yu, Y. F.; Zhang, B. Photothermally assisted photocatalytic conversion of CO2-H2O into fuels over a WN-WO3 Z-scheme heterostructure. J. Mater. Chem. A 2020, 8, 1077–1083.

    CAS  Google Scholar 

  36. Jin, C.; Deng, H. J.; Zhang, J.; Hao, Y.; Liu, J. J. Jagged carbon nanotubes from polyaniline: Strain-driven high-performance for Zn-air battery. Chem. Eng. J. 2022, 434, 134617.

    CAS  Google Scholar 

  37. Wang, B. J.; Huang, F. Z.; Wu, H.; Xu, Z. J.; Wang, S. P.; Han, Q. H.; Liu, F. H.; Li, S. K.; Zhang, H. Enhanced interfacial polarization of defective porous carbon confined CoP nanoparticles forming Mott-Schottky heterojunction for efficient electromagnetic wave absorption. Nano Res., in press, https://doi.org/10.1007/s12274-022-4779-3.

  38. Xu, F.; Ding, B. C.; Qiu, Y. Q.; Dong, R. H.; Zhuang, W. Q.; Xu, X. S.; Han, H. J.; Yang, J. Y.; Wei, B. Q.; Wang, H. Q. et al. Generalized domino-driven synthesis of hollow hybrid carbon spheres with ultrafine metal nitrides/oxides. Matter 2020, 3, 246–260.

    Google Scholar 

  39. Khan, N. A.; Bhadra, B. N.; Park, S. W.; Han, Y. S.; Jhung, S. H. Tungsten nitride, well-dispersed on porous carbon: Remarkable catalyst, produced without addition of ammonia, for the oxidative desulfurization of liquid fuel. Small 2020, 16, 1901564.

    CAS  Google Scholar 

  40. Kim, J. B.; Jang, B.; Lee, H. J.; Han, W. S.; Lee, D. J.; Lee, H. B. R.; Hong, T. E.; Kim, S. H. A controlled growth of WNx and WCx thin films prepared by atomic layer deposition. Mater. Lett. 2016, 168, 218–222.

    CAS  Google Scholar 

  41. Lin, L. L.; Liu, J. J.; Liu, X.; Gao, Z. R.; Rui, N.; Yao, S. Y.; Zhang, F.; Wang, M. L.; Liu, C.; Han, L. L. et al. Reversing sintering effect of Ni particles on γ-Mo2N via strong metal support interaction. Nat. Commun. 2021, 12, 6978.

    CAS  Google Scholar 

  42. Gao, Y.; Lang, Z. L.; Yu, F. Y.; Tan, H. Q.; Yan, G.; Wang, Y. H.; Ma, Y. Y.; Li, Y. G. A Co2P/WC nano-heterojunction covered with N-doped carbon as highly efficient electrocatalyst for hydrogen evolution reaction. ChemSusChem 2018, 11, 1082–1091.

    CAS  Google Scholar 

  43. Wu, S. C.; Huang, Y. H.; Liao, C. R.; Tang, S. Y.; Yang, T. Y.; Wang, Y. C.; Yu, Y. J.; Perng, T. P.; Chueh, Y. L. Rational design of a polysulfide catholyte electrocatalyst by interfacial engineering based on novel MoS2/MoN heterostructures for superior room-temperature Na-S batteries. Nano Energy 2021, 90, 106590.

    CAS  Google Scholar 

  44. Diao, J. X.; Qiu, Y.; Liu, S. Q.; Wang, W. T.; Chen, K.; Li, H. L.; Yuan, W. Y.; Qu, Y. T.; Guo, X. H. Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: A highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv. Mater. 2020, 32, 1905679.

    CAS  Google Scholar 

  45. Zhang, S. P.; Yao, Y.; Jiao, X. J.; Ma, M. Z.; Huang, H. J.; Zhou, X. F.; Wang, L. F.; Bai, J. T.; Yu, Y. Mo2N-W2N heterostructures embedded in spherical carbon superstructure as highly efficient polysulfide electrocatalysts for stable room-temperature Na-S batteries. Adv. Mater. 2021, 33, 2103846.

    CAS  Google Scholar 

  46. Zhu, Y.; Zheng, H. Y.; Liu, X. Y.; Sun, C. Y.; Dong, M.; Wang, X. L.; Su, Z. M. Ultra-small porous WN/W2C nanoparticles for sustained hydrogen production by a polyoxometalate-intercalated pyrolysis strategy. New J. Chem. 2022, 46, 23292–23296.

    CAS  Google Scholar 

  47. Xu, S. H.; Chu, S. Y.; Yang, L.; Chen, Y.; Wang, Z. Y.; Jiang, C. L. Tungsten nitride/carbide nanocomposite encapsulated in nitrogen-doped carbon shell as an effective and durable catalyst for hydrogen evolution reaction. New J. Chem. 2018, 42, 19557–19563.

    CAS  Google Scholar 

  48. Sun, S. C.; Jiang, H.; Chen, Z. Y.; Chen, Q.; Ma, M. Y.; Zhen, L.; Song, B.; Xu, C. Y. Bifunctional WC-supported RuO2 nanoparticles for robust water splitting in acidic media. Angew. Chem., Int. Ed. 2022, 61, e202202519.

    CAS  Google Scholar 

  49. Zhu, J. X.; Xia, L. X.; Yu, R. H.; Lu, R. H.; Li, J. T.; He, R. H.; Wu, Y. C.; Zhang, W.; Hong, X. F.; Chen, W. et al. Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc. 2022, 144, 15529–15538.

    CAS  Google Scholar 

  50. Li, H.; Li, Q.; Wen, P.; Williams, T. B.; Adhikari, S.; Dun, C.; Lu, C.; Itanze, D.; Jiang, L.; Carroll, D. L. et al. Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc-air battery. Adv. Mater. 2018, 30, 1705796.

    Google Scholar 

  51. Chen, D. F.; Pan, L.; Pei, P. C.; Song, X.; Ren, P.; Zhang, L. Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives. Nano Res. 2022, 15, 5038–5063.

    CAS  Google Scholar 

  52. Zheng, H. Z.; Ma, F.; Yang, H. C.; Wu, X. G.; Wang, R.; Jia, D. L.; Wang, Z. X.; Lu, N. D.; Ran, F.; Peng, S. L. Mn, N co-doped Co nanoparticles/porous carbon as air cathode for highly efficient rechargeable Zn-air batteries. Nano Res. 2022, 15, 1942–1948.

    CAS  Google Scholar 

  53. Meng, H. L.; Lin, S. Y.; Cao, Y.; Wang, A. J.; Zhang, L.; Feng, J. J. CoFe alloy embedded in N-doped carbon nanotubes derived from triamterene as a highly efficient and durable electrocatalyst beyond commercial Pt/C for oxygen reduction. J. Colloid Interface Sci. 2021, 604, 856–865.

    CAS  Google Scholar 

  54. Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.

    Google Scholar 

  55. Ozsdolay, B. D.; Mulligan, C. P.; Balasubramanian, K.; Huang, L. P.; Khare, S. V.; Gall, D. Cubic β-WNx layers: Growth and properties vs. N-to-W ratio. Surf. Coat. Technol. 2016, 304, 98–107.

    CAS  Google Scholar 

  56. Sun, R. M.; Wu, R. Z.; Li, X. S.; Feng, J. J.; Zhang, L.; Wang, A. J. Well entrapped platinum-iron nanoparticles on three-dimensional nitrogen-doped ordered mesoporous carbon as highly efficient and durable catalyst for oxygen reduction and zinc-air battery. J. Colloid Interface Sci. 2022, 621, 275–284.

    CAS  Google Scholar 

  57. Han, J. X.; Bao, H. L.; Wang, J. Q.; Zheng, L. R.; Sun, S. R.; Wang, Z. L.; Sun, C. W. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B: Environ. 2021, 280, 119411.

    CAS  Google Scholar 

  58. Zhu, M. S. Cryogenic electrolytes and catalysts for zinc air batteries. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.0023.9120038.

  59. Zhu, J. X.; Li, S. K.; Zhuang, Z. C.; Gao, S.; Hong, X. F.; Pan, X. L.; Yu, R. H.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Ultrathin metal silicate hydroxide nanosheets with moderate metal-oxygen covalency enables efficient oxygen evolution. Energy Environ. Mater. 2022, 5, 231–237.

    CAS  Google Scholar 

  60. Zhu, J. X.; Xia, L. X.; Yang, W. X.; Yu, R. H.; Zhang, W.; Luo, W.; Dai, Y. H.; Wei, W.; Zhou, L.; Zhao, Y. et al. Activating inert sites in cobalt silicate hydroxides for oxygen evolution through atomically doping. Energy Environ. Mater. 2022, 5, 655–661.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Hubei Provincial Natural Science Foundation and Huangshi of China (No. 2022CFD039), the National Natural Science Foundation of China (Nos. 22008058 and 22209073), the Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province (No. T2021010), the Natural Science Foundation of Jiangsu Province (No. BK20220912), and the China Postdoctoral Science Foundation (No. 2022M711607).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Du, Yisi Liu or Zhenhui Liu.

Electronic supplementary material

12274_2023_5501_MOESM1_ESM.pdf

One-step, in situ formation of WN-W2C heterojunctions implanted on N doped carbon nanorods as efficient oxygen reduction catalyst for metal-air battery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Chen, W., Zhou, L. et al. One-step, in situ formation of WN-W2C heterojunctions implanted on N doped carbon nanorods as efficient oxygen reduction catalyst for metal-air battery. Nano Res. 16, 8773–8781 (2023). https://doi.org/10.1007/s12274-023-5501-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5501-9

Keywords

Navigation