Skip to main content
Log in

Porphyrin-based metal—organic framework nanocrystals for combination of immune and sonodynamic therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Immune therapy based on programmed death-ligand 1 (PD-L1) is widely used to treat human tumors. The current strategies to improve immune checkpoint blockade therapy fail in rescuing increased expression of PD-L1 in tumor issues. Here, we for the first time synthesized the metal—organic framework (MOF) nanocrystals of rare-earth element dysprosium (Dy) coordinated with tetrakis(4-carboxyphenyl) porphyrin (TCPP), which show well-defined two-dimensional morphologies. The MOF nanocrystals of Dy-TCPP could apparently reduce PD-L1 expression in tumor cells both in vitro and in vivo, and therefore display effective tumor treatment through immune therapy without any immune checkpoint inhibitor drugs. Considering the sensitivity of TCPP ligand toward ultrasound, the prepared Dy-TCPP can also realize sonodynamic therapy (SDT) besides immune therapy. In addition, the Dy-TCPP nanocrystals can efficiently obtain T2-weight magnetic resonance imaging (MRI) of tumor sites. Our study provides the Dy-TCPP nanocrystals as promising diagnostic MRI-guided platforms for the combined treatment on tumors with SDT and immune therapy. Moreover, this strategy succeeds in reducing the elevated expression of PD-L1 in tumor cells, which might serve as a novel avenue for tumor immunotherapy in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Byun, D. J.; Wolchok, J. D.; Rosenberg, L. M.; Girotra, M. Cancer immunotherapy—Immune checkpoint blockade and associated endocrinopathies. Nat. Rev. Endocrinol. 2017, 13, 195–207.

    CAS  Google Scholar 

  2. Zhan, G. T.; Xu, Q. B.; Zhang, Z. L.; Wei, Z. H.; Yong, T. Y.; Bie, N. N.; Zhang, X. Q.; Li, X.; Li, J. Y.; Gan, L. et al. Biomimetic sonodynamic therapy-nanovaccine integration platform potentiates anti-PD-1 therapy in hypoxic tumors. Nano Today 2021, 38, 101195.

    CAS  Google Scholar 

  3. Xu, Y. D.; Ma, S.; Zhao, J. Y.; Si, X. H.; Huang, Z. C.; Zhang, Y.; Song, W. T.; Tang, Z. H.; Chen, X. S. Trinity immune enhancing nanoparticles for boosting antitumor immune responses of immunogenic chemotherapy. Nano Res. 2022, 15, 1183–1192.

    CAS  Google Scholar 

  4. Chen, Q.; Wang, C.; Chen, G. J.; Hu, Q. Y.; Gu, Z. Delivery strategies for immune checkpoint blockade. Adv. Healthcare Mater. 2018, 7, 1800424.

    Google Scholar 

  5. Zhu, W. J.; Chen, Q.; Jin, Q. T.; Chao, Y.; Sun, L. L.; Han, X.; Xu, J.; Tian, L. L.; Zhang, J. L.; Liu, T. et al. Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Res. 2021, 14, 212–221.

    CAS  Google Scholar 

  6. Pan, J. M.; Li, X. L.; Shao, B. F.; Xu, F. N.; Huang, X. H.; Guo, X.; Zhou, S. B. Self-blockade of PD-L1 with bacteria-derived outermembrane vesicle for enhanced cancer immunotherapy. Adv. Mater. 2022, 34, 2106307.

    CAS  Google Scholar 

  7. Filippone, A.; Lanza, M.; Mannino, D.; Raciti, G.; Colarossi, C.; Sciacca, D.; Cuzzocrea, S.; Paterniti, I. PD1/PD-L1 immune checkpoint as a potential target for preventing brain tumor progression. Cancer Immunol. Immunother. 2022, 71, 2067–2075.

    CAS  Google Scholar 

  8. Guo, Z. P.; Hu, Y. Y.; Zhao, M. Y.; Hao, K.; He, P.; Tian, H. Y.; Chen, X. S.; Chen, M. W. Prodrug-based versatile nanomedicine with simultaneous physical and physiological tumor penetration for enhanced cancer chemo-immunotherapy. Nano Lett. 2021, 21, 3721–3730.

    CAS  Google Scholar 

  9. DePeaux, K.; Delgoffe, G. M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol. 2021, 21, 785–797.

    CAS  Google Scholar 

  10. Ramos-Casals, M.; Brahmer, J. R.; Callahan, M. K.; Flores-Chávez, A.; Keegan, N.; Khamashta, M. A.; Lambotte, O.; Mariette, X.; Prat, A.; Suárez-Almazor, M. E. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Primers 2020, 6, 38.

    Google Scholar 

  11. Wright, J. J.; Powers, A. C.; Johnson, D. B. Endocrine toxicities of immune checkpoint inhibitors. Nat. Rev. Endocrinol. 2021, 17, 389–399.

    CAS  Google Scholar 

  12. Sullivan, R. J.; Weber, J. S. Immune-related toxicities of checkpoint inhibitors: Mechanisms and mitigation strategies. Nat. Rev. Drug Discov. 2022, 21, 495–508.

    CAS  Google Scholar 

  13. Jing, Y.; Liu, J.; Ye, Y. Q.; Pan, L.; Deng, H.; Wang, Y. S.; Yang, Y.; Diao, L. X.; Lin, S. H.; Mills, G. B. et al. Multi-omics prediction of immune-related adverse events during checkpoint immunotherapy. Nat. Commun. 2020, 11, 4946.

    CAS  Google Scholar 

  14. Sun, C.; Mezzadra, R.; Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 2018, 48, 434–452.

    CAS  Google Scholar 

  15. Chen, J.; Jiang, C. C.; Jin, L.; Zhang, X. D. Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann. Oncol. 2016, 27, 409–416.

    CAS  Google Scholar 

  16. Lucibello, G.; Mograbi, B.; Milano, G.; Hofman, P.; Brest, P. PD-L1 regulation revisited: Impact on immunotherapeutic strategies. Trends Mol. Med. 2021, 27, 868–881.

    CAS  Google Scholar 

  17. Cai, S. X.; Chen, Z. Y.; Wang, Y. J.; Wang, M.; Wu, J. Y.; Tong, Y. H.; Chen, L. L.; Lu, C. H.; Yang, H. H. Reducing PD-L1 expression with a self-assembled nanodrug: An alternative to PD-L1 antibody for enhanced chemo-immunotherapy. Theranostics 2021, 11, 1970–1981.

    CAS  Google Scholar 

  18. Gu, J. J.; Sun, J. Y.; Liu, Y.; Chong, G. W.; Li, Y. Y.; Dong, H. Q. Nanosystem-mediated lactate modulation in the tumor micro environment for enhanced cancer therapy. Nano Res., in press, https://doi.org/10.1007/s12274-022-4620-z.

  19. An, L.; Wang, X.; Rui, X.; Lin, J.; Yang, H.; Tian, Q.; Tao, C.; Yang, S. The in situ sulfidation of Cu2O by endogenous H2S for colon cancer theranostics. Angew. Chem., Int. Ed. 2018, 57, 15782–15786.

    CAS  Google Scholar 

  20. Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

    CAS  Google Scholar 

  21. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    CAS  Google Scholar 

  22. Zou, M. Z.; Liu, W. L.; Li, C. X.; Zheng, D. W.; Zeng, J. Y.; Gao, F.; Ye, J. J.; Zhang, X. Z. A multifunctional biomimetic nanoplatform for relieving hypoxia to enhance chemotherapy and inhibit the PD-1/PD-L1 axis. Small 2018, 14, 1801120.

    Google Scholar 

  23. Poon, W.; Kingston, B. R.; Ouyang, B.; Ngo, W.; Chan, W. C. W. A framework for designing delivery systems. Nat. Nanotechnol. 2020, 15, 819–829.

    CAS  Google Scholar 

  24. Sindhwani, S.; Syed, A. M.; Ngai, J.; Kingston, B. R.; Maiorino, L.; Rothschild, J.; MacMillan, P.; Zhang, Y. W.; Rajesh, N. U.; Hoang, T. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020, 19, 566–575.

    CAS  Google Scholar 

  25. Ouyang, B.; Poon, W.; Zhang, Y. N.; Lin, Z. P.; Kingston, B. R.; Tavares, A. J.; Zhang, Y. W.; Chen, J.; Valic, M. S.; Syed, A. M. et al. The dose threshold for nanoparticle tumour delivery. Nat. Mater. 2020, 19, 1362–1371.

    CAS  Google Scholar 

  26. Ma, A. Q.; Chen, H. Q.; Cui, Y. H.; Luo, Z. Y.; Liang, R. J.; Wu, Z. H.; Chen, Z.; Yin, T.; Ni, J.; Zheng, M. B. et al. Metalloporphyrin complex-based nanosonosensitizers for deep-tissue tumor theranostics by noninvasive sonodynamic therapy. Small 2019, 15, 1804028.

    Google Scholar 

  27. Chen, J. J.; Zhu, Y. F.; Kaskel, S. Porphyrin-based metal—organic frameworks for biomedical applications. Angew. Chem., Int. Ed. 2021, 60, 5010–5035.

    CAS  Google Scholar 

  28. Zhao, Y. W.; Wang, J. N.; Cai, X.; Ding, P.; Lv, H. Y.; Pei, R. J. Metal-organic frameworks with enhanced photodynamic therapy: Synthesis, erythrocyte membrane camouflage, and aptamer-targeted aggregation. ACS Appl. Mater. Interfaces 2020, 12, 23697–23706.

    CAS  Google Scholar 

  29. Wan, S. S.; Cheng, Q.; Zeng, X.; Zhang, X. Z. A Mn(III)-sealed metal—organic framework nanosystem for redox-unlocked tumor theranostics. ACS Nano 2019, 13, 6561–6571.

    CAS  Google Scholar 

  30. Wang, C.; Cao, F. J.; Ruan, Y. D.; Jia, X. D.; Zhen, W. Y.; Jiang, X. E. Specific generation of singlet oxygen through the russell mechanism in hypoxic tumors and GSH depletion by Cu-TCPP nanosheets for cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 9846–9850.

    CAS  Google Scholar 

  31. Zhao, Y. W.; Kuang, Y.; Liu, M.; Wang, J. N.; Pei, R. J. Synthesis of metal—organic framework nanosheets with high relaxation rate and singlet oxygen yield. Chem. Mater. 2018, 30, 7511–7520.

    CAS  Google Scholar 

  32. Jiang, S.; He, Q. J.; Li, C. C.; Dang, K.; Ye, L.; Zhang, W. W.; Tian, Y. Employing the thiol-ene click reaction via metal-organic frameworks for integrated sonodynamic-starvation therapy as an oncology treatment. Sci. China Mater. 2022, 65, 1112–1121.

    CAS  Google Scholar 

  33. Wang, Y.; Zhou, X. T.; Dong, W. X.; Zhong, Q. S.; Mo, X. X.; Li, H. Light responsive Fe-TCPP@ICG for hydrogen peroxide detection and inhibition of tumor cell growth. Biosens. Bioelectron. 2022, 200, 113931.

    CAS  Google Scholar 

  34. Xu, W. L.; Kattel, K.; Park, J. Y.; Chang, Y. M.; Kim, T. J.; Lee, G. H. Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Phys. Chem. Chem. Phys. 2012, 14, 12687–12700.

    CAS  Google Scholar 

  35. Hu, H.; Zhang, Y. F.; Shukla, S.; Gu, Y. N.; Yu, X.; Steinmetz, N. F. Dysprosium-modified tobacco mosaic virus nanoparticles for ultra-high-field magnetic resonance and near-infrared fluorescence imaging of prostate cancer. ACS Nano 2017, 11, 9249–9258.

    CAS  Google Scholar 

  36. Kattel, K.; Park, J. Y.; Xu, W. L.; Kim, H. G.; Lee, E. J.; Bony, B. A.; Heo, W. C.; Lee, J. J.; Jin, S.; Baeck, J. S. et al. A facile synthesis, in vitro and in vivo MR studies of D-glucuronic acid-coated ultrasmall Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent. ACS Appl. Mater. Interfaces 2011, 3, 3325–3334.

    CAS  Google Scholar 

  37. Zha, Q. Z.; Rui, X.; Wei, T. T.; Xie, Y. S. Recent advances in the design strategies for porphyrin-based coordination polymers. CrystEngComm 2014, 16, 7371–7384.

    CAS  Google Scholar 

  38. Lipstman, S.; Muniappan, S.; George, S.; Goldberg, I. Framework coordination polymers of tetra(4-carboxyphenyl)porphyrin and lanthanide ions in crystalline solids. Dalton Trans. 2007, 3273–3281.

  39. Zhao, Y. W.; Wang, J. N.; Pei, R. J. Micron-sized ultrathin metal—organic framework sheet. J. Am. Chem. Soc. 2020, 142, 10331–10336.

    CAS  Google Scholar 

  40. Tong, S.; Cinelli, M. A.; El-Sayed, N. S.; Huang, H.; Patel, A.; Silverman, R. B.; Yang, S. Inhibition of interferon-gamma-stimulated melanoma progression by targeting neuronal nitric oxide synthase (nNOS). Sci. Rep. 2022, 12, 1701.

    CAS  Google Scholar 

  41. Pistillo, M. P.; Carosio, R.; Banelli, B.; Morabito, A.; Mastracci, L.; Ferro, P.; Varesano, S.; Venè, R.; Poggi, A.; Roncella, S. IFN-γ upregulates membranous and soluble PD-L1 in mesothelioma cells: Potential implications for the clinical response to PD-1/PD-L1 blockade. Cell. Mol. Immunol. 2020, 17, 410–411.

    CAS  Google Scholar 

  42. Shang, M.; Yang, H. J.; Yang, R.; Chen, T.; Fu, Y.; Li, Y. Y.; Fang, X. L.; Zhang, K. J.; Zhang, J. J.; Li, H. et al. The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation. Nat. Commun. 2021, 12, 1940.

    CAS  Google Scholar 

  43. Liu, Y. L.; Lu, M. Z.; Chen, J. N.; Li, S. Q.; Deng, Y. Y.; Yang, S. F.; Ou, Q.; Li, J.; Gao, P.; Luo, Z. R. et al. Extracellular vesicles derived from lung cancer cells exposed to intermittent hypoxia upregulate programmed death ligand 1 expression in macrophages. Sleep Breath. 2022, 26, 893–906.

    Google Scholar 

  44. Pei, S. Z.; You, S. J.; Ma, J.; Chen, X. D.; Ren, N. Q. Electron spin resonance evidence for electro-generated hydroxyl radicals. Environ. Sci. Technol. 2020, 54, 13333–13343.

    CAS  Google Scholar 

  45. Emami, F.; Banstola, A.; Vatanara, A.; Lee, S.; Kim, J. O.; Jeong, J. H.; Yook, S. Doxorubicin and anti-PD-L1 antibody conjugated gold nanoparticles for colorectal cancer photochemotherapy. Mol. Pharmaceutics 2019, 16, 1184–1199.

    CAS  Google Scholar 

  46. Feng, D. F.; Qin, B.; Pal, K.; Sun, L.; Dutta, S.; Dong, H. D.; Liu, X.; Mukhopadhyay, D.; Huang, S. B.; Sinicrope, F. A. BRAFV600E-induced, tumor intrinsic PD-L1 can regulate chemotherapy-induced apoptosis in human colon cancer cells and in tumor xenografts. Oncogene 2019, 38, 6752–6766.

    CAS  Google Scholar 

  47. Tanaka, E.; Miyakawa, Y.; Kishikawa, T.; Seimiya, T.; Iwata, T.; Funato, K.; Odawara, N.; Sekiba, K.; Yamagami, M.; Suzuki, T. et al. Expression of circular RNA CDR1-AS in colon cancer cells increases cell surface PD-L1 protein levels. Oncol. Rep. 2019, 42, 1459–1466.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52172096) and the Foundation of CNU (No. 0092255073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Zhang or Yang Tian.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Liu, C., He, Q. et al. Porphyrin-based metal—organic framework nanocrystals for combination of immune and sonodynamic therapy. Nano Res. 16, 9633–9641 (2023). https://doi.org/10.1007/s12274-023-5477-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5477-5

Keywords

Navigation