Skip to main content
Log in

Highly conductive, stretchable, durable, skin-conformal dry electrodes based on thermoplastic elastomer-embedded 3D porous graphene for multifunctional wearable bioelectronics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Long-term bioelectric potential recording requires highly reliable wearable dry electrodes. Laser-induced graphene (LIG) dry electrodes on polyimide (PI) films are difficult to conform to the skin due to the non-stretchability and low flexibility of PI films. As a result, high interface impedance and motion artifacts can occur during body movements. Transferring LIG to flexible substrates such as polydimethylsiloxane (PDMS) and Ecoflex allows for stretchability and flexibility. However, the transfer process produces a significant loss of conductivity destroying the structural function and electron conduction properties of the LIG. We found robust physical and chemical bonding effects between LIG and styrene-ethylene-butylene-styrene (SEBS) thermoplastic elastomer substrates and proposed a simple and robust low-conductivity loss transfer technique. Successfully embedded LIG onto SEBS to obtain high stretchability, high flexibility, and low conductivity losses. Electrophoretic deposition (EPD) of poly(3,4-ethylenedioxythiophene):polystyrenesulfonic acid (PEDOT:PSS) on LIG forms an ultrathin polymer conductive coating. The deposition thickness of the conductive polymer is adjusted by controlling the EPD deposition time to achieve optimal conductivity and chemical stability. SEBS/LIG/PEDOT:PSS (SLPP) dry electrodes have high conductivity (114 Ω/Sq), stretchability (300%) and reliability (30% stretch, 15,000 cycles), and low electrode-skin impedance (14.39 kΩ, 10 Hz). The detected biopotential signal has a high signal-to-noise ratio (SNR) of 35.78 dB. Finally, the feasibility of SLPP dry electrodes for long-term biopotential monitoring and biopotential-based human-machine interface control of household appliances was verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, Y. J.; Zhang, Y. C.; Cai, S. S.; Han, Z. Y.; Liu, X.; Wang, F. L.; Cao, Y.; Wang, Z. H.; Li, H. F.; Chen, Y. H. et al. Flexible hybrid electronics for digital healthcare. Adv. Mater. 2020, 32, 1902062.

    CAS  Google Scholar 

  2. Niu, H. S.; Gao, S.; Yue, W. J.; Li, Y.; Zhou, W. J.; Liu, H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 2020, 16, 1904774.

    CAS  Google Scholar 

  3. Fang, Y. S.; Li, Y.; Wang, X.; Zhou, Z. G.; Zhang, K.; Zhou, J.; Hu, B. Cryo-transferred ultrathin and stretchable epidermal electrodes. Small 2020, 16, 2000450.

    CAS  Google Scholar 

  4. Kim, J. J.; Wang, Y.; Wang, H. Y.; Lee, S.; Yokota, T.; Someya, T. Skin electronics: Next-generation device platform for virtual and augmented reality. Adv. Funct. Mater. 2021, 31, 2009602.

    CAS  Google Scholar 

  5. Park, J.; Hwang, J. C.; Kim, G. G.; Park, J. U. Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials. InfoMat 2020, 2, 33–56.

    CAS  Google Scholar 

  6. Lee, M. S.; Kim, J.; Park, J.; Park, J. U. Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Nanoscale Res. Lett. 2015, 10, 27.

    Google Scholar 

  7. Su, Y.; Ma, K. N.; Zhang, X.; Liu, M. Neural network-enabled flexible pressure and temperature sensor with honeycomb-like architecture for voice recognition. Sensors 2022, 22, 759.

    Google Scholar 

  8. Wang, Y. S.; Wang, X. Q.; Lu, W.; Yuan, Q. P.; Zheng, Y. R.; Yao, B. A thin film polyethylene terephthalate (PET) electrochemical sensor for detection of glucose in sweat. Talanta 2019, 198, 86–92.

    CAS  Google Scholar 

  9. Zhou, P. Y.; Liao, Y. Z.; Yang, X. B.; Su, Y. Y.; Yang, J. W.; Xu, L.; Wang, K.; Zeng, Z. H.; Zhou, L. M.; Zhang, Z. et al. Thermally stable, adhesively strong graphene/polyimide films for inkjet printing ultrasound sensors. Carbon 2021, 184, 64–71.

    CAS  Google Scholar 

  10. Chen, J.; Zheng, J. H.; Gao, Q. W.; Zhang, J. J.; Zhang, J. Y.; Omisore, O. M.; Wang, L.; Li, H. Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications. Appl. Sci. 2018, 8, 345.

    Google Scholar 

  11. Kim, D. H.; Jung, Y.; Jung, K.; Kwak, D. H.; Park, D. M.; Shin, M. G.; Tak, H. J.; Ko, J. S. Hollow polydimethylsiloxane (PDMS) foam with a 3D interconnected network for highly sensitive capacitive pressure sensors. Micro Nano Syst. Lett. 2020, 8, 24.

    Google Scholar 

  12. Vivaldi, F. M.; Dallinger, A.; Bonini, A.; Poma, N.; Sembranti, L.; Biagini, D.; Salvo, P.; Greco, F.; Di Francesco, F. Three-dimensional (3D) laser-induced graphene: Structure, properties, and application to chemical sensing. ACS Appl. Mater. Interfaces 2021, 13, 30245–30260.

    CAS  Google Scholar 

  13. Sonntag, J.; Li, J.; Plaud, A.; Loiseau, A.; Barjon, J.; Edgar, J. H.; Stampfer, C. Excellent electronic transport in heterostructures of graphene and monoisotopic boron-nitride grown at atmospheric pressure. 2D Mater. 2020, 7, 031009.

    CAS  Google Scholar 

  14. Sur, U. K. Graphene: A rising star on the horizon of materials science. Int. J. Electrochem. 2012, 2012, 237689.

    Google Scholar 

  15. Zahed, M. A.; Das, P. S.; Maharjan, P.; Barman, S. C.; Sharifuzzaman, M.; Yoon, S. H.; Park, J. Y. Flexible and robust dry electrodes based on electroconductive polymer spray-coated 3D porous graphene for long-term electrocardiogram signal monitoring system. Carbon 2020, 165, 26–36.

    Google Scholar 

  16. Xu, Y. D.; Fei, Q. H.; Page, M.; Zhao, G. G.; Ling, Y.; Chen, D.; Yan, Z. Laser-induced graphene for bioelectronics and soft actuators. Nano Res. 2021, 14, 3033–3050.

    CAS  Google Scholar 

  17. Xuan, X.; Kim, J. Y.; Hui, X.; Das, P. S.; Yoon, H. S.; Park, J. Y. A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosens. Bioelectron. 2018, 120, 160–167.

    CAS  Google Scholar 

  18. Mahmood, F.; Zhang, H. W.; Lin, J.; Wan, C. X. Laser-induced graphene derived from Kraft lignin for flexible supercapacitors. ACS Omega 2020, 5, 14611–14618.

    CAS  Google Scholar 

  19. Dallinger, A.; Kindlhofer, P.; Greco, F.; Coclite, A. M. Multiresponsive soft actuators based on a thermoresponsive hydrogel and embedded laser-induced graphene. ACS Appl. Polym. Mater. 2021, 3, 1809–1818.

    CAS  Google Scholar 

  20. Zhang, S. P.; Chhetry, A.; Zahed, M. A.; Sharma, S.; Park, C.; Yoon, S.; Park, J. Y. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. npj Flex. Electron. 2022, 6, 11.

    CAS  Google Scholar 

  21. Sharudin, R. W. B.; Ohshima, M. Preparation of microcellular thermoplastic elastomer foams from polystyrene-b-ethylene-butylene-b-polystyrene (SEBS) and their blends with polystyrene. J. Appl. Polym. Sci. 2013, 128, 2245–2254.

    CAS  Google Scholar 

  22. Koo, C. M. Electroactive thermoplastic dielectric elastomers as a new generation polymer actuators. In Thermoplastic Elastomers. El-Sonbati, A., Ed.; InTech: Rijeka, 2012.

    Google Scholar 

  23. Czajka, M.; Shanks, R. A.; Kong, I. Preparation of graphene and inclusion in composites with poly(styrene-b-butadiene-b-styrene). Sci. Eng. Compos. Mater. 2015, 22, 7–16.

    CAS  Google Scholar 

  24. Yu, W.; Li, S. S.; Yang, H. Y.; Luo, J. Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 2020, 10, 15328–15345.

    CAS  Google Scholar 

  25. Kwon, M.; Yang, J.; Kim, H.; Joo, H.; Joo, S. W.; Lee, Y. S.; Lee, H. J.; Jeong, S. Y.; Han, J. H.; Paik, H. J. Controlling graphene wrinkles through the phase transition of a polymer with a low critical solution temperature. Macromol. Rapid Commun. 2021, 42, 2100489.

    CAS  Google Scholar 

  26. Zhang, L.; Kumar, K. S.; He, H.; Cai, C. J.; He, X.; Gao, H. X.; Yue, S. Z.; Li, C. S.; Seet, R. C. S.; Ren, H. L. et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 2020, 11, 4683.

    CAS  Google Scholar 

  27. Chen, Y. H.; De Beeck, M. O.; Vanderheyden, L.; Carrette, E.; Mihajlović, V.; Vanstreels, K.; Grundlehner, B.; Gadeyne, S.; Boon, P.; Van Hoof, C. Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording. Sensors 2014, 14, 23758–23780.

    Google Scholar 

  28. Fu, Y. L.; Zhao, J. J.; Dong, Y.; Wang, X. H. Dry electrodes for human bioelectrical signal monitoring. Sensors 2020, 20, 3651.

    Google Scholar 

  29. Yang, Y.; Deng, H.; Fu, Q. Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Mater. Chem. Front. 2020, 4, 3130–3152.

    CAS  Google Scholar 

  30. Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076.

    Google Scholar 

  31. Kim, N.; Lienemann, S.; Petsagkourakis, I.; Mengistie, D. A.; Kee, S.; Ederth, T.; Gueskine, V.; Leclère, P.; Lazzaroni, R.; Crispin, X. et al. Elastic conducting polymer composites in thermoelectric modules. Nat. Commun. 2020, 11, 1424.

    Google Scholar 

  32. Shahrim, N. A.; Ahmad, Z.; Azman, A. W.; Buys, Y. F.; Sarifuddin, N. Mechanisms for doped PEDOT:PSS electrical conductivity improvement. Mater. Adv. 2021, 2, 7118–7138.

    CAS  Google Scholar 

  33. Gao, N.; Yu, J. R.; Tian, Q. Y.; Shi, J. F.; Zhang, M.; Chen, S.; Zang, L. Application of PEDOT:PSS and its composites in electrochemical and electronic chemosensors. Chemosensors 2021, 9, 79.

    CAS  Google Scholar 

  34. Xie, X.; Ju, L.; Feng, X. F.; Sun, Y. H.; Zhou, R. F.; Liu, K.; Fan, S. S.; Li, Q. Q.; Jiang, K. L. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett. 2009, 9, 2565–2570.

    CAS  Google Scholar 

  35. Sinha, S. K.; Noh, Y.; Reljin, N.; Treich, G. M.; Hajeb-Mohammadalipour, S.; Guo, Y.; Chon, K. H.; Sotzing, G. A. Screen-printed PEDOT:PSS electrodes on commercial finished textiles for electrocardiography. ACS Appl. Mater. Interfaces 2017, 9, 37524–37528.

    CAS  Google Scholar 

  36. Su, Z. J.; Yang, C.; Xu, C. J.; Wu, H. Y.; Zhang, Z. X.; Liu, T.; Zhang, C.; Yang, Q. H.; Li, B. H.; Kang, F. Y. Co-electro-deposition of the MnO2-PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices. J. Mater. Chem. A 2013, 1, 12432–12440.

    CAS  Google Scholar 

  37. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    CAS  Google Scholar 

  38. Li, W.; Tan, C.; Lowe, M. A.; Abruña, H. D.; Ralph, D. C. Electrochemistry of individual monolayer graphene sheets. ACS Nano 2011, 5, 2264–2270.

    CAS  Google Scholar 

  39. Jiang, X. Y.; Wang, Z. L.; Han, W. H.; Liu, Q. M.; Lu, S. Q.; Wen, Y. X.; Hou, J.; Huang, F.; Peng, S. L.; He, D. Y. et al. High performance silicon-organic hybrid solar cells via improving conductivity of PEDOT:PSS with reduced graphene oxide. Appl. Surf. Sci. 2017, 407, 398–404.

    CAS  Google Scholar 

  40. Guo, X. S.; Jian, J. M.; Lin, L. W.; Zhu, H. Y.; Zhu, S. M. O2 plasma-functionalized SWCNTs and PEDOT/PSS composite film assembled by dielectrophoresis for ultrasensitive trimethylamine gas sensor. Analyst 2013, 138, 5265–5273.

    CAS  Google Scholar 

  41. Merche, D.; Hubert, J.; Poleunis, C.; Yunus, S.; Bertrand, P.; De Keyzer, P.; Reniers, F. One step polymerization of sulfonated polystyrene films in a dielectric barrier discharge. Plasma Process. Polym. 2010, 7, 836–845.

    CAS  Google Scholar 

  42. Kim, S. M.; Kim, C. H.; Kim, Y.; Kim, N.; Lee, W. J.; Lee, E. H.; Kim, D.; Park, S.; Lee, K.; Rivnay, J. et al. Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nat. Commun. 2018, 9, 3858.

    Google Scholar 

  43. Stauffer, F.; Thielen, M.; Sauter, C.; Chardonnens, S.; Bachmann, S.; Tybrandt, K.; Peters, C.; Hierold, C.; Vörös, J. Skin conformal polymer electrodes for clinical ECG and EEG recordings. Adv. Healthc. Mater. 2018, 7, 1700994.

    Google Scholar 

Download references

Acknowledgements

This research was funded and conducted under the Competency Development Program for Industry Specialists of the Korean Ministry of Trade, Industry, and Energy (MOTIE), operated by the Korea Institute for Advancement of Technology (KIAT, No. P0002397, HRD program for Industrial Convergence of Wearable Smart De-vices) and the Technology Innovation Program (No. 20000773, Development of nano multi sensors based on wearable patch for nonhematological monitoring of metabolic syndrome), and funded by the Ministry of Trade, Industry & Energy (MI, Korea). The authors are grateful to the group members of the Advanced Sensor and Energy Research (ASER) Laboratory of Kwangwoon University for their valuable suggestions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Yeong Park.

Electronic Supplementary Material

12274_2023_5429_MOESM1_ESM.pdf

Highly conductive, stretchable, durable, skin-conformal dry electrodes based on thermoplastic elastomer-embedded 3D porous graphene for multifunctional wearable bioelectronics

Supplementary material, approximately 4.53 MB.

Supplementary material, approximately 2.22 MB.

Supplementary material, approximately 2.44 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Sharifuzzamn, M., Rana, S.M.S. et al. Highly conductive, stretchable, durable, skin-conformal dry electrodes based on thermoplastic elastomer-embedded 3D porous graphene for multifunctional wearable bioelectronics. Nano Res. 16, 7627–7637 (2023). https://doi.org/10.1007/s12274-023-5429-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5429-5

Keywords

Navigation