Skip to main content
Log in

Electronic tattoos based on large-area Mo2C grown by chemical vapor deposition for electrophysiology

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2023

This article has been updated

Abstract

Tattoo electronics has attracted intensive interest in recent years due to its comfortable wearing and imperceivable sensing, and has been broadly applied in wearable healthcare and human—machine interface. However, the tattoo electrodes are mostly composed of metal films and conductive polymers. Two-dimensional (2D) materials, which are superior in conductivity and stability, are barely studied for electronic tattoos. Herein, we reported a novel electronic tattoo based on large-area Mo2C film grown by chemical vapor deposition (CVD), and applied it to accurately and imperceivably acquire on-body electrophysiological signals and interface with robotics. High-quality Mo2C film was obtained via optimizing the distribution of gas flow during CVD growth. According to the finite element simulation (FES), bottom surface of Cu foil covers more stable gas flow than the top surface, thus leading to more uniform Mo2C film. The resulting Mo2C film was transferred onto tattoo paper, showing a total thickness of ∼ 3 µm, sheet resistance of 60–150 Ω/sq, and skin-electrode impedance of ∼ 5 × 105 Ω. Such thin Mo2C electronic tattoo (MCET in short) can form conformal contact with skin and accurately record electrophysiological signals, including electromyography (EMG), electrocardiogram (ECG), and electrooculogram (EOG). These body signals collected by MCET can not only reflect the health status but also be transformed to control the robotics for human—machine interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Chen, J. W.; Zhu, Y. T.; Chang, X. H.; Pan, D.; Song, G.; Guo, Z. H.; Naik, N. Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 2021, 31, 2104686.

    CAS  Google Scholar 

  2. Hammock, M. L.; Chortos, A.; Tee, B. C. K.; Tok, J. B. H.; Bao, Z. N. 25th anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress. Adv. Mater. 2013, 25, 5997–6038.

    CAS  Google Scholar 

  3. Ling, Y. Z.; An, T. C.; Yap, L. W.; Zhu, B. W.; Gong, S.; Cheng, W. L. Disruptive, soft, wearable sensors. Adv. Mater. 2020, 32, e1904664.

    Google Scholar 

  4. Lyu, Q. X.; Gong, S.; Yin, J. L.; Dyson, J. M.; Cheng, W. L. Soft wearable healthcare materials and devices. Adv. Healthc. Mater. 2021, 10, 2100577.

    CAS  Google Scholar 

  5. Wang, X. W.; Liu, Z.; Zhang, T. Flexible sensing electronics for wearable/attachable health monitoring. Small 2017, 13, 1602790.

    Google Scholar 

  6. Wu, H.; Yang, G. G.; Zhu, K. H.; Liu, S. Y.; Guo, W.; Jiang, Z.; Li, Z. Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human—machine interfaces. Adv. Sci. (Weinh.) 2021, 8, 2001938.

    CAS  Google Scholar 

  7. Bandodkar, A. J.; Jia, W. Z.; Wang, J. Tattoo-based wearable electrochemical devices: A review. Electroanalysis 2015, 27, 562–572.

    CAS  Google Scholar 

  8. Ferrari, L. M.; Sudha, S.; Tarantino, S.; Esposti, R.; Bolzoni, F.; Cavallari, P.; Cipriani, C.; Mattoli, V.; Greco, F. Ultraconformable temporary tattoo electrodes for electrophysiology. Adv. Sci. (Weinh.) 2018, 5, 1700771.

    Google Scholar 

  9. Gogurla, N.; Kim, Y.; Cho, S.; Kim, J.; Kim, S. Multifunctional and ultrathin electronic tattoo for on-skin diagnostic and therapeutic applications. Adv. Mater. 2021, 33, 2008308.

    CAS  Google Scholar 

  10. Wang, Q.; Ling, S. J.; Liang, X. P.; Wang, H. M.; Lu, H. J.; Zhang, Y. Y. Self-healable multifunctional electronic tattoos based on silk and graphene. Adv. Funct. Mater. 2019, 29, 1808695.

    Google Scholar 

  11. Huigen, E.; Peper, A.; Grimbergen, C. A. Investigation into the origin of the noise of surface electrodes. Med. Biol. Eng. Comput. 2002, 40, 332–338.

    CAS  Google Scholar 

  12. Nawrocki, R. A.; Jin, H.; Lee, S.; Yokota, T.; Sekino, M.; Someya, T. Self-adhesive and ultra-conformable, Sub-300 nm dry thin-film electrodes for surface monitoring of biopotentials. Adv. Funct. Mater. 2018, 28, 1803279.

    Google Scholar 

  13. Dong, J. C.; Zhang, L. N.; Ding, F. Kinetics of graphene and 2D materials growth. Adv. Mater. 2019, 31, 1801583.

    Google Scholar 

  14. Kim, J.; Lee, Y.; Kang, M.; Hu, L.; Zhao, S. F.; Ahn, J. H. 2D materials for skin-mountable electronic devices. Adv. Mater. 2021, 33, 2005858.

    CAS  Google Scholar 

  15. Wang, B. L.; Sun, Y. F.; Ding, H. Y.; Zhao, X.; Zhang, L.; Bai, J. W.; Liu, K. Bioelectronics-related 2D materials beyond graphene: Fundamentals, properties, and applications. Adv. Funct. Mater. 2020, 30, 2003732.

    CAS  Google Scholar 

  16. Song, D. K.; Ye, G.; Zhao, Y.; Zhang, Y.; Hou, X. C.; Liu, N. An all-in-one, bioderived, air-permeable, and sweat-stable MXene epidermal electrode for muscle theranostics. ACS Nano 2022, 16, 17168–17178.

    CAS  Google Scholar 

  17. Zhou, H. L.; Yu, W. J.; Liu, L. X.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. F. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 2013, 4, 2096.

    Google Scholar 

  18. Wu, B.; Geng, D. C.; Xu, Z. P.; Guo, Y. L.; Huang, L. P.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Liu, Y. Q. Self-organized graphene crystal patterns. NPG Asia Mater. 2013, 5, e36.

    CAS  Google Scholar 

  19. Chao, M. Y.; He, L. Z.; Gong, M.; Li, N.; Li, X. B.; Peng, L. F.; Shi, F.; Zhang, L. Q.; Wan, P. B. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 2021, 15, 9746–9758.

    CAS  Google Scholar 

  20. Zhang, Y. Z.; El-Demellawi, J. K.; Jiang, Q.; Ge, G.; Liang, H. F.; Lee, K.; Dong, X. C.; Alshareef, H. N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020, 49, 7229–7251.

    CAS  Google Scholar 

  21. Zhang, W. F.; Zhang, Y.; Qiu, J. K.; Zhao, Z. H.; Liu, N. Topological structures of transition metal dichalcogenides: A review on fabrication, effects, applications, and potential. InfoMat 2021, 3, 133–154.

    CAS  Google Scholar 

  22. Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

    CAS  Google Scholar 

  23. Ameri, S. K.; Ho, R.; Jang, H.; Tao, L.; Wang, Y. H.; Wang, L.; Schnyer, D. M.; Akinwande, D.; Lu, N. S. Graphene electronic tattoo sensors. ACS Nano 2017, 11, 7634–7641.

    Google Scholar 

  24. Kireev, D.; Ameri, S. K.; Nederveld, A.; Kampfe, J.; Jang, H.; Lu, N. S.; Akinwande, D. Fabrication, characterization and applications of graphene electronic tattoos. Nat. Protoc. 2021, 16, 2395–2417.

    CAS  Google Scholar 

  25. Kireev, D.; Okogbue, E.; Jayanth, R. T.; Ko, T. J.; Jung, Y.; Akinwande, D. Multipurpose and reusable ultrathin electronic tattoos based on PtSe2 and PtTe2. ACS Nano 2021, 15, 2800–2811.

    CAS  Google Scholar 

  26. Xu, C.; Wang, L. B.; Liu, Z. B.; Chen, L.; Guo, J. K.; Kang, N.; Ma, X. L.; Cheng, H. M.; Ren, W. C. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015, 14, 1135–1141.

    CAS  Google Scholar 

  27. Zhang, Q.; Huang, W. C.; Yang, C. Y.; Wang, F.; Song, C. Q.; Gao, Y.; Qiu, Y. F.; Yan, M.; Yang, B.; Guo, C. S. The theranostic nanoagent Mo2C for multi-modal imaging-guided cancer synergistic phototherapy. Biomater. Sci. 2019, 7, 2729–2739.

    CAS  Google Scholar 

  28. Chi, J.-Q.; Yang, M.; Chai, Y.-M.; Yang, Z.; Wang, L.; Dong, B. Design and modulation principles of molybdenum carbide-based materials for green hydrogen evolution. J. Energy Chem. 2020, 48, 398–423.

    Google Scholar 

  29. Wan, J.; Wu, J. B.; Gao, X.; Li, T. Q.; Hu, Z. M.; Yu, H. M.; Huang, L. Structure confined porous Mo2C for efficient hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1703933.

    Google Scholar 

  30. Yang, X.; Cheng, J.; Yang, X.; Xu, Y.; Sun, W. F.; Zhou, J. H. Facet-tunable coral-like Mo2C catalyst for electrocatalytic hydrogen evolution reaction. Chem. Eng. J. 2023, 451, 138977.

    CAS  Google Scholar 

  31. Feng, W.; Wang, R. Y.; Zhou, Y. D.; Ding, L.; Gao, X.; Zhou, B. G.; Hu, P.; Chen, Y. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia. Adv. Funct. Mater. 2019, 29, 1901942.

    Google Scholar 

  32. Geng, D. C.; Zhao, X. X.; Li, L. J.; Song, P.; Tian, B. B.; Liu, W.; Chen, J. Y.; Shi, D.; Lin, M.; Zhou, W. et al. Controlled growth of ultrathin Mo2C superconducting crystals on liquid Cu surface. 2D Mater. 2017, 4, 011012.

    Google Scholar 

  33. Ba, K.; Wang, G. L.; Ye, T.; Wang, X. R.; Sun, Y. Y.; Liu, H. Q.; Hu, A. Q.; Li, Z. Y.; Sun, Z. Z. Single faceted two-dimensional Mo2C electrocatalyst for highly efficient nitrogen fixation. ACS Catal. 2020, 10, 7864–7870.

    CAS  Google Scholar 

  34. Geng, D. C.; Zhao, X. X.; Chen, Z. X.; Sun, W. W.; Fu, W.; Chen, J. Y.; Liu, W.; Zhou, W.; Loh, K. P. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 2017, 29, 1700072.

    Google Scholar 

  35. Fan, Y. X.; Huang, L.; Geng, D. C.; Hu, W. P. Controlled growth of Mo2C pyramids on liquid Cu surface. J. Semicond. 2020, 41, 082001.

    CAS  Google Scholar 

  36. Turker, F.; Caylan, O. R.; Mehmood, N.; Kasirga, T. S.; Sevik, C.; Buke, G. C. CVD synthesis and characterization of thin Mo2C crystals. J. Amer. Ceram. Soc. 2020, 103, 5586–5593.

    CAS  Google Scholar 

  37. Qiao, J. B.; Gong, Y.; Zuo, W. J.; Wei, Y. C.; Ma, D. L.; Yang, H.; Yang, N.; Qiao, K. Y.; Shi, J. A.; Gu, L. et al. One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting α-Mo2C. Phys. Rev. B 2017, 95, 201403.

    Google Scholar 

  38. Fan, Y. J.; Li, X.; Kuang, S. Y.; Zhang, L.; Chen, Y. H.; Liu, L.; Zhang, K.; Ma, S. W.; Liang, F.; Wu, T. et al. Highly robust, transparent, and breathable epidermal electrode. ACS Nano 2018, 12, 9326–9332.

    CAS  Google Scholar 

  39. Wu, R. Z.; Pan, J.; Ou, X. W.; Zhang, Q. C.; Ding, Y.; Sheng, P.; Luo, Z. T. Concurrent fast growth of sub-centimeter single-crystal graphene with controlled nucleation density in a confined channel. Nanoscale 2017, 9, 9631–9640.

    CAS  Google Scholar 

  40. Guo, W.; Wu, B.; Wang, S.; Liu, Y. Q. Controlling fundamental fluctuations for reproducible growth of large single-crystal graphene. ACS Nano 2018, 12, 1778–1784.

    CAS  Google Scholar 

  41. Li, T. S.; Luo, W. J.; Kitadai, H.; Wang, X. Z.; Ling, X. Probing the domain architecture in 2D α-Mo2C via polarized Raman spectroscopy. Adv. Mater. 2019, 31, 1807160.

    Google Scholar 

  42. Qiu, J. K.; Yu, T. H.; Zhang, W. F.; Zhao, Z. H.; Zhang, Y.; Ye, G.; Zhao, Y.; Du, X. J.; Liu, X.; Yang, L. et al. A bioinspired, durable, and nondisposable transparent graphene skin electrode for electrophysiological signal detection. ACS Materials Lett. 2020, 2, 999–1007.

    CAS  Google Scholar 

  43. Zhao, Y.; Zhang, S.; Yu, T. H.; Zhang, Y.; Ye, G.; Cui, H.; He, C. Z.; Jiang, W. C.; Zhai, Y.; Lu, C. M. et al. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat. Commun. 2021, 12, 4880.

    CAS  Google Scholar 

  44. Barold, S. S. Willem Einthoven and the birth of clinical electrocardiography a hundred years ago. Card. Electrophysiol. Rev. 2003, 7, 99–104.

    Google Scholar 

  45. Wei, H. H.; Shi, R. C.; Sun, L.; Yu, H. Y.; Gong, J. D.; Liu, C.; Xu, Z. P.; Ni, Y.; Xu, J. L.; Xu, W. T. Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. Nat. Commun. 2021, 12, 1068.

    CAS  Google Scholar 

  46. Kim, Y.; Chortos, A.; Xu, W. T.; Liu, Y. X.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C. X.; Lee, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998–1003.

    CAS  Google Scholar 

  47. Sun, L.; Du, Y.; Yu, H. Y.; Wei, H. H.; Xu, W. L.; Xu, W. T. An artificial reflex arc that perceives afferent visual and tactile information and controls efferent muscular actions. Research 2022, 2022, 9851843.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21903007, 22072006, and 22275022), Young Thousand Talents Program (No. 110532103), Beijing Normal University Startup funding (No. 312232102), Beijing Municipal Science & Technology Commission (No. Z191100000819002), and the Fundamental Research Funds for the Central Universities (No. 310421109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, X., Zhang, W. et al. Electronic tattoos based on large-area Mo2C grown by chemical vapor deposition for electrophysiology. Nano Res. 16, 4100–4106 (2023). https://doi.org/10.1007/s12274-023-5423-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5423-y

Keywords

Navigation