Skip to main content
Log in

Modulating hydrothermal condition to achieve carbon dots-zeolite composites with multicolor afterglow

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Responsive luminescence materials with prolonged lifetime and multicolor emission have drawn great attention due to their attractive optical property and potential applications. Herein, two responsive carbon dots (CDs) based composites: CD1@MCM-22P and CD2@ZSM-12 were achieved by a one-step hydrothermal method. By adjusting the hydrothermal condition, CD1@MCM-22P owns temperature-dependent afterglow, while CD2@ZSM-12 is equipped with excitation-dependent room-temperature phosphorescence. The photoluminescence mechanisms of CD1@MCM-22P and CD2@ZSM-12 were investigated and proposed, and the composites were applied in multi-mode anti-counterfeiting. This work provides an insight as well as a feasible method for the development of multi-emissive CDs@zeolite composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Y.; Shi, C.; Yang, X. D.; Shen, B. W.; Sun, Y. Q.; Chen, Y.; Xu, X. W.; Sun, H. C.; Yu, K.; Yang, B. et al. pH- and temperature-sensitive hydrogel nanoparticles with dual photoluminescence for bioprobes. ACS Nano 2016, 10, 5856–5863.

    CAS  Google Scholar 

  2. Nakamitsu, M.; Oyama, K.; Imai, H.; Fujii, S.; Oaki, Y. Ultrahigh-sensitive compression-stress sensor using integrated stimuli-responsive materials. Adv. Mater. 2021, 33, 2008755.

    CAS  Google Scholar 

  3. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

    CAS  Google Scholar 

  4. Lin, Z.; Wang, H.; Yu, M. L.; Guo, X.; Zhang, C. H.; Deng, H. T.; Zhang, P. S.; Chen, S.; Zeng, R. J.; Cui, J. X. et al. Photoswitchable ultrahigh-brightness red fluorescent polymeric nanoparticles for information encryption, anti-counterfeiting and bioimaging. J. Mater. Chem. C 2019, 7, 11515–11521.

    CAS  Google Scholar 

  5. Huang, G. X.; Jiang, Y. Q.; Yang, S. F.; Li, B. S.; Tang, B. Z. Multistimuli response and polymorphism of a novel tetraphenylethylene derivative. Adv. Funct. Mater. 2019, 29, 1900516.

    Google Scholar 

  6. Abdollahi, A.; Alidaei-Sharif, H.; Roghani-Mamaqani, H.; Herizchi, A. Photoswitchable fluorescent polymer nanoparticles as high-security anticounterfeiting materials for authentication and optical patterning. J. Mater. Chem. C 2020, 8, 5476–5493.

    CAS  Google Scholar 

  7. Xiong, X. Q.; Song, F. L.; Wang, J. Y.; Zhang, Y. K.; Xue, Y. Y.; Sun, L. L.; Jiang, N.; Gao, P.; Tian, L.; Peng, X. J. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging. J. Am. Chem. Soc. 2014, 136, 9590–9597.

    CAS  Google Scholar 

  8. Gao, R.; Yan, D. P.; Evans, D. G.; Duan, X. Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications. Nano Res. 2017, 10, 3606–3617.

    CAS  Google Scholar 

  9. Li, D.; Yang, J.; Fang, M. M.; Tang, B. Z.; Li, Z. Stimulus-responsive room temperature phosphorescence materials with full-color tunability from pure organic amorphous polymers. Sci. Adv. 2022, 8, eabl8392.

    CAS  Google Scholar 

  10. Huang, Y. S.; Zheng, X.; Yao, Z. Z.; Lv, W.; Xiang, S. C.; Ling, Q. D.; Lin, Z. H. Multimode stimuli responsive dual-state organic room temperature phosphorescence from a phenanthrene derivative. Chem. Eng. J. 2022, 444, 136629.

    CAS  Google Scholar 

  11. Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.

    CAS  Google Scholar 

  12. Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

    CAS  Google Scholar 

  13. Liu, J. J.; Li, R.; Yang, B. Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 2020, 6, 2179–2195.

    CAS  Google Scholar 

  14. Ru, Y.; Ai, L.; Jia, T. T.; Liu, X. J.; Lu, S. Y.; Tang, Z. Y.; Yang, B. Recent advances in chiral carbonized polymer dots: From synthesis and properties to applications. Nano Today 2020, 34, 100953.

    CAS  Google Scholar 

  15. Wang, H.; Zhao, E. G.; Lam, J. W. Y.; Tang, B. Z. AIE luminogens: Emission brightened by aggregation. Mater. Today 2015, 18, 365–377.

    CAS  Google Scholar 

  16. Wang, D.; Tang, B. Z. Aggregation-induced emission luminogens for activity-based sensing. Acc. Chem. Res. 2019, 52, 2559–2570.

    CAS  Google Scholar 

  17. Zhang, J. Y.; Hu, L. R.; Zhang, K. H.; Liu, J. K.; Li, X. G.; Wang, H. R.; Wang, Z. Y.; Sung, H. H. Y.; Williams, I. D.; Zeng, Z. B. et al. How to manipulate through-space conjugation and clusteroluminescence of simple aiegens with isolated phenyl rings. J. Am. Chem. Soc. 2021, 143, 9565–9574.

    CAS  Google Scholar 

  18. Qu, S. N.; Wang, X. Y.; Lu, Q. P.; Liu, X. Y.; Wang, L. J. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem., Int. Ed. 2012, 51, 12215–12218.

    CAS  Google Scholar 

  19. Chen, Y. H.; Zheng, M. T.; Xiao, Y.; Dong, H. W.; Zhang, H. R.; Zhuang, J. L.; Hu, H.; Lei, B. F.; Liu, Y. L. A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white lightemission. Adv. Mater. 2016, 28, 312–318.

    CAS  Google Scholar 

  20. Sun, Y. Q.; Liu, J. K.; Pang, X. L.; Zhang, X. J.; Zhuang, J. L.; Zhang, H. R.; Hu, C. F.; Zheng, M. T.; Lei, B. F.; Liu, Y. L. Temperature-responsive conversion of thermally activated delayed fluorescence and room-temperature phosphorescence of carbon dots in silica. J. Mater. Chem. C 2020, 8, 5744–5751.

    CAS  Google Scholar 

  21. Deng, Y. H.; Zhao, D. X.; Chen, X.; Wang, F.; Song, H.; Shen, D. Z. Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun. 2013, 49, 5751–5753.

    CAS  Google Scholar 

  22. Zhang, H. Y.; Wang, B. L.; Yu, X. W.; Li, J. Y.; Shang, J.; Yu, J. H. Carbon dots in porous materials: Host-guest synergy for enhanced performance. Angew. Chem., Int. Ed. 2020, 59, 19390–19402.

    CAS  Google Scholar 

  23. Liu, J. C.; Zhang, H. Y.; Wang, N.; Yu, Y.; Cui, Y. Z.; Li, J. Y.; Yu, J. H. Template-modulated afterglow of carbon dots in zeolites: Room-temperature phosphorescence and thermally activated delayed fluorescence. ACS Mater. Lett. 2019, 1, 58–63.

    CAS  Google Scholar 

  24. He, L.; Wang, T. T.; An, J. P.; Li, X. M.; Zhang, L. Y.; Li, L.; Li, G. Z.; Wu, X. T.; Su, Z. M.; Wang, C. G. Carbon nanodots@zeolitic imidazolate framework-8 nanoparticles for simultaneous phresponsive drug delivery and fluorescence imaging. CrystEngComm 2014, 16, 3259–3263.

    CAS  Google Scholar 

  25. Song, S. Y.; Liu, K. K.; Cao, Q.; Mao, X.; Zhao, W. B.; Wang, Y.; Liang, Y. C.; Zang, J. H.; Lou, Q.; Dong, L. et al. Ultraviolet phosphorescent carbon nanodots. Light: Sci. Appl. 2022, 11, 146.

    CAS  Google Scholar 

  26. Liang, Y. C.; Cao, Q.; Liu, K. K.; Peng, X. Y.; Sui, L. Z.; Wang, S. P.; Song, S. Y.; Wu, X. Y.; Zhao, W. B.; Deng, Y. et al. Phosphorescent carbon-nanodots-assisted förster resonant energy transfer for achieving red afterglow in an aqueous solution. ACS Nano 2021, 15, 16242–16254.

    CAS  Google Scholar 

  27. Tao, S. Y.; Zhou, C. J.; Kang, C. Y.; Zhu, S. J.; Feng, T. L.; Zhang, S. T.; Ding, Z. Y.; Zheng, C. Y.; Xia, C. L.; Yang, B. Confined-domain crosslink-enhanced emission effect in carbonized polymer dots. Light: Sci. Appl. 2022, 11, 56.

    CAS  Google Scholar 

  28. Wang, Y. Q.; Wang, C. T.; Wang, L. X.; Wang, L.; Xiao, F. S. Zeolite fixed metal nanoparticles: New perspective in catalysis. Acc. Chem. Res. 2021, 54, 2579–2590.

    CAS  Google Scholar 

  29. Choi, Y.; Choi, Y.; Kwon, O. H.; Kim, B. S. Carbon dots: Bottom-up syntheses, properties, and light-harvesting applications. Chem.-Asian J. 2018, 13, 586–598.

    CAS  Google Scholar 

  30. Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800–7804.

    CAS  Google Scholar 

  31. Liu, J. C.; Wang, N.; Yu, Y.; Yan, Y.; Zhang, H. Y.; Li, J. Y.; Yu, J. H. Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci. Adv. 2017, 3, e1603171.

    Google Scholar 

  32. Zong, S. Y.; Wang, B. L.; Yin, X.; Ma, W. Y.; Zhang, J. N.; Li, J. Y. Calcination-controlled fabrication of carbon dots@zeolite composites with multicolor fluorescence and phosphorescence. Nano Res. 2022, 15, 9454–9460.

    CAS  Google Scholar 

  33. Wang, B. L.; Yu, Y.; Zhang, H. Y.; Xuan, Y. Z.; Chen, G. R.; Ma, W. Y.; Li, J. Y.; Yu, J. H. Carbon dots in a matrix: Energy-transfer-enhanced room-temperature red phosphorescence. Angew. Chem., Int. Ed. 2019, 58, 18443–18448.

    CAS  Google Scholar 

  34. Yu, X. W.; Liu, K. K.; Zhang, H. Y.; Wang, B. L.; Ma, W. Y.; Li, J. Y.; Yu, J. H. Carbon dots-in-EuAPO-5 zeolite: Triple-emission for multilevel luminescence anti-counterfeiting. Small 2021, 17, 2103374.

    CAS  Google Scholar 

  35. Liu, Y. C.; Kang, X.; Xu, Y. Q.; Li, Y. R.; Wang, S.; Wang, C. Y.; Hu, W. Q.; Wang, R. H.; Liu, J. C. Modulating the carbonization degree of carbon dots for multicolor afterglow emission. ACS Appl. Mater. Interfaces 2022, 14, 22363–22371.

    CAS  Google Scholar 

  36. Ostroumova, V. A.; Maksimov, A. L. MWW-type zeolites: MCM-22, MCM-36, MCM-49, and MCM-56 (a review). Pet. Chem. 2019, 59, 788–801.

    CAS  Google Scholar 

  37. Feng, G.; Wen, Z. H.; Wang, J. C.; Lu, Z. H.; Zhou, J.; Zhang, R. B. Guiding the design of practical MTW zeolite catalysts: An integrated experimental-theoretical perspective. Microporous Mesoporous Mater. 2021, 312, 110810.

    CAS  Google Scholar 

  38. Liu, W. F.; Jia, H. S.; Zhang, J.; Shao, L.; Wang, J.; Fang, D. W. A novel dual-excitation and dual-emission fluorescent probe CDs-COO-F for hydrazine detection in aqueous solutions and living cells. Dyes Pigm. 2021, 184, 108831.

    CAS  Google Scholar 

  39. Wang, Q.; Zhang, S. R.; Zhong, Y. G.; Yang, X. F.; Li, Z.; Li, H. Preparation of yellow-green-emissive carbon dots and their application in constructing a fluorescent turn-on nanoprobe for imaging of selenol in living cells. Anal. Chem. 2017, 89, 1734–1741.

    CAS  Google Scholar 

  40. Jiang, K.; Wang, Y. H.; Gao, X. L.; Cai, C. Z.; Lin, H. W. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem., Int. Ed. 2018, 57, 6216–6220.

    CAS  Google Scholar 

  41. Li, W.; Zhang, Z. H.; Kong, B.; Feng, S. S.; Wang, J. X.; Wang, L. Z.; Yang, J. P.; Zhang, F.; Wu, P. Y.; Zhao, D. Y. Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew. Chem., Int. Ed. 2013, 52, 8151–8155.

    CAS  Google Scholar 

  42. Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed. 2015, 54, 5360–5363.

    CAS  Google Scholar 

  43. Liu, M. L.; Chen, B. B.; Li, C. M.; Huang, C. Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019, 21, 449–471.

    CAS  Google Scholar 

  44. Yang, P.; Zhu, Z. Q.; Zhang, T.; Chen, M. Z.; Cao, Y. Z.; Zhang, W.; Wang, X.; Zhou, X. Y.; Chen, W. M. Facile synthesis and photoluminescence mechanism of green emitting xylose-derived carbon dots for anti-counterfeit printing. Carbon 2019, 146, 636–649.

    CAS  Google Scholar 

  45. Zheng, B. Z.; Liu, T.; Paau, M. C.; Wang, M. N.; Liu, Y.; Liu, L. Z.; Wu, C. F.; Du, J.; Xiao, D.; Choi, M. M. F. One pot selective synthesis of water and organic soluble carbon dots with green fluorescence emission. RSC Adv. 2015, 5, 11667–11675.

    CAS  Google Scholar 

  46. Eda, G.; Lin, Y. Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. A.; Chen, I. S.; Chen, C. W.; Chhowalla, M. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 2010, 22, 505–509.

    CAS  Google Scholar 

  47. Lei, Y. X.; Yang, J. F.; Dai, W. B.; Lan, Y. S.; Yang, J. H.; Zheng, X. Y.; Shi, J. B.; Tong, B.; Cai, Z. X.; Dong, Y. P. Efficient and organic host-guest room-temperature phosphorescence: Tunable triplet-singlet crossing and theoretical calculations for molecular packing. Chem. Sci. 2021, 12, 6518–6525.

    CAS  Google Scholar 

  48. Du, Y. Q.; Bai, T.; Yan, H. X.; Zhao, Y.; Feng, W. X.; Li, W. Q. A simple and convenient route to synthesize novel hyperbranched poly(amine ester) with multicolored fluorescence. Polymer 2019, 185, 121771.

    CAS  Google Scholar 

  49. Zhou, Q.; Cao, B. Y.; Zhu, C. X.; Xu, S.; Gong, Y. Y.; Yuan, W. Z.; Zhang, Y. M. Clustering-triggered emission of nonconjugated polyacrylonitrile. Small 2016, 12, 6586–6592.

    CAS  Google Scholar 

  50. Zheng, S. Y.; Zhu, T. W.; Wang, Y. Z.; Yang, T. J.; Yuan, W. Z. Accessing tunable afterglows from highly twisted nonaromatic organic AIEgens via effective through-space conjugation. Angew. Chem., Int. Ed. 2020, 59, 10018–10022.

    CAS  Google Scholar 

  51. Zhou, Q.; Wang, Z. Y.; Dou, X. Y.; Wang, Y. Z.; Liu, S. E.; Zhang, Y. M.; Yuan, W. Z. Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Mater. Chem. Front. 2019, 3, 257–264.

    CAS  Google Scholar 

  52. Zhang, H. K.; Zhao, Z.; McGonigal, P. R.; Ye, R. Q.; Liu, S. J.; Lam, J. W. Y.; Kwok, R. T. K.; Yuan, W. Z.; Xie, J. P.; Rogach, A. L. et al. Clusterization-triggered emission: Uncommon luminescence from common materials. Mater. Today 2020, 32, 275–292.

    CAS  Google Scholar 

  53. Zhou, Q.; Yang, T. J.; Zhong, Z. H.; Kausar, F.; Wang, Z. Y.; Zhang, Y. M.; Yuan, W. Z. A clustering-triggered emission strategy for tunable multicolor persistent phosphorescence. Chem. Sci. 2020, 11, 2926–2933.

    CAS  Google Scholar 

  54. Zhang, H. K.; Tang, B. Z. Through-space interactions in clusteroluminescence. JACS Au 2021, 1, 1805–1814.

    CAS  Google Scholar 

  55. Tang, S. X.; Yang, T. J.; Zhao, Z. H.; Zhu, T. W.; Zhang, Q.; Hou, W. B. W.; Yuan, W. Z. Nonconventional luminophores: Characteristics, advancements and perspectives. Chem. Soc. Rev. 2021, 50, 12616–12655.

    CAS  Google Scholar 

  56. Tang, S. X.; Zhao, Z. H.; Chen, J. Q.; Yang, T. J.; Wang, Y. Z.; Chen, X. H.; Lv, M.; Yuan, W. Z. Unprecedented and readily tunable photoluminescence from aliphatic quaternary ammonium salts. Angew. Chem., Int. Ed. 2022, 61, e202117368.

    CAS  Google Scholar 

  57. Chu, B.; Zhang, H. K.; Chen, K. L.; Liu, B.; Yu, Q. L.; Zhang, C. J.; Sun, J. Z.; Yang, Q.; Zhang, X. H.; Tang, B. Z. Aliphatic polyesters with white-light clusteroluminescence. J. Am. Chem. Soc. 2022, 144, 15286–15294.

    CAS  Google Scholar 

  58. Wang, C.; Chen, Y. Y.; Hu, T. T.; Chang, Y.; Ran, G. X.; Wang, M.; Song, Q. J. Color tunable room temperature phosphorescent carbon dot based nanocomposites obtainable from multiple carbon sources via a molten salt method. Nanoscale 2019, 11, 11967–11974.

    CAS  Google Scholar 

  59. Shi, H. X.; Niu, Z. J.; Wang, H.; Ye, W. P.; Xi, K.; Huang, X.; Wang, H. L.; Liu, Y. F.; Lin, H. W.; Shi, H. F. et al. Endowing matrix-free carbon dots with color-tunable ultralong phosphorescence by self-doping. Chem. Sci. 2022, 13, 4406–4412.

    CAS  Google Scholar 

  60. Jiang, K.; Hu, S. Z.; Wang, Y. C.; Li, Z. J.; Lin, H. W. Photo-stimulated polychromatic room temperature phosphorescence of carbon dots. Small 2020, 16, 2001909.

    CAS  Google Scholar 

  61. Wang, H.; Shi, H. F.; Ye, W. P.; Yao, X. K.; Wang, Q.; Dong, C. M.; Jia, W. Y.; Ma, H. L.; Cai, S. Z.; Huang, K. W. et al. Amorphous ionic polymers with color-tunable ultralong organic phosphorescence. Angew. Chem., Int. Ed. 2019, 58, 18776–18782.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21971259).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiyang Li or Jiuxing Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Zeng, Z., Wang, B. et al. Modulating hydrothermal condition to achieve carbon dots-zeolite composites with multicolor afterglow. Nano Res. 16, 7761–7769 (2023). https://doi.org/10.1007/s12274-023-5410-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5410-y

Keywords

Navigation