Skip to main content
Log in

Targeting cancer-associated fibroblasts with hydroxyethyl starch nanomedicine boosts cancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cancer-associated fibroblasts (CAFs) play an important role in facilitating the progression of triple-negative breast cancer (TNBC) by deteriorating the tumor mechanical microenvironment (TMME). Herein, we designed a CAFs-targeting nanomedicine by conjugating doxorubicin (DOX)-loaded hydroxyethyl starch-IR780 nanoparticles (NPs) with Cys-Arg-Glu-Lys-Ala (CREKA) peptide, which had a special affinity for fibronectin overexpressed on CAFs. After systemic administration, the NPs efficiently targeted CAFs and generated hyperthermia upon light irradiation, decreasing CAFs through the combination of chemo- and photothermal-therapies. Thus, a series of changes in TMME were achieved by reducing CAFs, which further disrupted the niche of cancer stem cells (CSCs) to affect their survival. As a result, the tumor growth was significantly inhibited in 4T1 tumors. The strategy of TMME modulation and CSCs elimination through targeting and depleting CAFs provides a novel therapeutic treatment for desmoplastic solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016, 16, 582–598.

    CAS  Google Scholar 

  2. Biffi, G.; Tuveson, D. A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev. 2021, 101, 147–176.

    CAS  Google Scholar 

  3. Hu, D. D.; Li, Z. Q.; Zheng, B.; Lin, X. X.; Pan, Y. H.; Gong, P. R.; Zhuo, W. Y.; Hu, Y. J.; Chen, C.; Chen, L. N. et al. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer. Commun. 2022, 42, 401–434.

    Google Scholar 

  4. Bulle, A.; Lim, K. H. Beyond just a tight fortress: Contribution of stroma to epithelial-mesenchymal transition in pancreatic cancer. Signal Transduct. Target. Ther. 2020, 5, 249.

    Google Scholar 

  5. Hyun, J.; Kim, H. W. Leveraging cellular mechano-responsiveness for cancer therapy. Trends Mol. Med. 2022, 28, 155–169.

    CAS  Google Scholar 

  6. Taddei, M. L.; Giannoni, E.; Comito, G.; Chiarugi, P. Microenvironment and tumor cell plasticity: An easy way out. Cancer Lett. 2013, 341, 80–96.

    CAS  Google Scholar 

  7. Nia, H. T.; Munn, L. L.; Jain, R. K. Physical traits of cancer. Science 2020, 370, eaaz0868.

    CAS  Google Scholar 

  8. Levental, K. R.; Yu, H. M.; Kass, L.; Lakins, J. N.; Egeblad, M.; Erler, J. T.; Fong, S. F. T.; Csiszar, K.; Giaccia, A.; Weninger, W. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009, 139, 891–906.

    CAS  Google Scholar 

  9. Tse, J. M.; Cheng, G.; Tyrrell, J. A.; Wilcox-Adelman, S. A.; Boucher, Y.; Jain, R. K.; Munn, L. L. Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl. Acad. Sci. USA 2012, 109, 911–916.

    CAS  Google Scholar 

  10. Stylianopoulos, T.; Jain, R. K. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 18632–18637.

    CAS  Google Scholar 

  11. Stylianopoulos, T.; Munn, L. L.; Jain, R. K. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: From mathematical modeling to bench to bedside. Trends Cancer 2018, 4, 292–319.

    CAS  Google Scholar 

  12. Su, S. C.; Chen, J. N.; Yao, H. R.; Liu, J.; Yu, S. B.; Lao, L. Y.; Wang, M. H.; Luo, M. L.; Xing, Y.; Chen, F. et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 2018, 172, 841–856.e16.

    CAS  Google Scholar 

  13. Heddleston, J. M.; Li, Z.; Lathia, J. D.; Bao, S.; Hjelmeland, A. B.; Rich, J. N. Hypoxia inducible factors in cancer stem cells. Br. J. Cancer 2010, 102, 789–795.

    CAS  Google Scholar 

  14. De Andrés, J. L.; Griñán-Lisón, C.; Jiménez, G.; Marchal, J. A. Cancer stem cell secretome in the tumor microenvironment: A key point for an effective personalized cancer treatment. J. Hematol. Oncol. 2020, 13, 136.

    Google Scholar 

  15. Saygin, C.; Matei, D.; Majeti, R.; Reizes, O.; Lathia, J. D. Targeting cancer stemness in the clinic: From hype to hope. Cell Stem Cell 2019, 24, 25–40.

    CAS  Google Scholar 

  16. Clara, J. A.; Monge, C.; Yang, Y. Z.; Takebe, N. Targeting signalling pathways and the immune microenvironment of cancer stem cells—A clinical update. Nat. Rev. Clin. Oncol. 2020, 17, 204–232.

    Google Scholar 

  17. Yang, L. Q.; Shi, P. F.; Zhao, G. C.; Xu, J.; Peng, W.; Zhang, J. Y.; Zhang, G. H.; Wang, X. W.; Dong, Z.; Chen, F. et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther. 2020, 5, 8.

    Google Scholar 

  18. Wu, F. L.; Yang, J.; Liu, J. J.; Wang, Y.; Mu, J. T.; Zeng, Q. X.; Deng, S. Z.; Zhou, H. M. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct. Target. Ther. 2021, 6, 218.

    CAS  Google Scholar 

  19. Chen, J. T.; Ding, Z. Y.; Li, S.; Liu, S.; Xiao, C.; Li, Z. F.; Zhang, B. X.; Chen, X. P.; Yang, X. L. Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics 2021, 11, 1345–1363.

    CAS  Google Scholar 

  20. Froeling, F. E. M.; Feig, C.; Chelala, C.; Dobson, R.; Mein, C. E.; Tuveson, D. A.; Clevers, H.; Hart, I. R.; Kocher, H. M. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-β-catenin signaling to slow tumor progression. Gastroenterology 2011, 141, 1486–1497.e14.

    CAS  Google Scholar 

  21. Wang, L. Y.; Liu, Z. M.; Zhou, Q.; Gu, S. F.; Liu, X. S.; Huang, J. X.; Jiang, H. P.; Wang, H. F.; Cao, L. P.; Sun, J. H. et al. Prodrug nanoparticles rationally integrating stroma modification and chemotherapy to treat metastatic pancreatic cancer. Biomaterials 2021, 278, 121176.

    CAS  Google Scholar 

  22. Zhou, S. Y.; Zhen, Z. P.; Paschall, A. V.; Xue, L. J.; Yang, X. Y.; Blackwell, A. G. B.; Cao, Z. W.; Zhang, W. Z.; Wang, M. Z.; Teng, Y. et al. FAP-targeted photodynamic therapy mediated by ferritin nanoparticles elicits an immune response against cancer cells and cancer associated fibroblasts. Adv. Funct. Mater. 2021, 31, 2007017.

    CAS  Google Scholar 

  23. Feng, J. X.; Xu, M. J.; Wang, J. H.; Zhou, S. L.; Liu, Y. P.; Liu, S. S.; Huang, Y. K.; Chen, Y.; Chen, L.; Song, Q. X. et al. Sequential delivery of nanoformulated α-mangostin and triptolide overcomes permeation obstacles and improves therapeutic effects in pancreatic cancer. Biomaterials 2020, 241, 119907.

    CAS  Google Scholar 

  24. Wu, H. L.; Hu, H.; Wan, J. L.; Li, Y. M.; Wu, Y. X.; Tang, Y. X.; Xiao, C.; Xu, H. B.; Yang, X. L.; Li, Z. F. Hydroxyethyl starch stabilized polydopamine nanoparticles for cancer chemotherapy. Chem. Eng. J. 2018, 349, 129–145.

    CAS  Google Scholar 

  25. Xiong, Y. X.; Wang, Z. B.; Wang, Q.; Deng, Q. Y.; Chen, J. T.; Wei, J. S.; Yang, X. Q.; Yang, X. L.; Li, Z. F. Tumor-specific activatable biopolymer nanoparticles stabilized by hydroxyethyl starch prodrug for self-amplified cooperative cancer therapy. Theranostics 2022, 12, 944–962.

    CAS  Google Scholar 

  26. Wang, H. M.; Hu, H.; Yang, H.; Li, Z. F. Hydroxyethyl starch based smart nanomedicine. RSC Adv. 2021, 11, 3226–3240.

    CAS  Google Scholar 

  27. Xiao, C.; Hu, H.; Yang, H.; Li, S.; Zhou, H.; Ruan, J.; Zhu, Y. T.; Yang, X. L.; Li, Z. F. Colloidal hydroxyethyl starch for tumor-targeted platinum delivery. Nanoscale Adv. 2019, 1, 1002–1012.

    CAS  Google Scholar 

  28. Zhou, Q.; Li, Y. H.; Zhu, Y. H.; Yu, C.; Jia, H. B.; Bao, B. H.; Hu, H.; Xiao, C.; Zhang, J. Q.; Zeng, X. F. et al. Co-delivery nanoparticle to overcome metastasis promoted by insufficient chemotherapy. J. Control. Release 2018, 275, 67–77.

    CAS  Google Scholar 

  29. Hu, H.; Li, Y. H.; Zhou, Q.; Ao, Y. X.; Yu, C.; Wan, Y.; Xu, H. B.; Li, Z. F.; Yang, X. L. Redox-sensitive hydroxyethyl starch-doxorubicin conjugate for tumor targeted drug delivery. ACS Appl. Mater. Interfaces 2016, 8, 30833–30844.

    CAS  Google Scholar 

  30. Luo, Q.; Wang, P. X.; Miao, Y. Q.; He, H. B.; Tang, X. A novel 5-fluorouracil prodrug using hydroxyethyl starch as a macromolecular carrier for sustained release. Carbohydr. Polym. 2012, 87, 2642–2647.

    CAS  Google Scholar 

  31. Hu, H.; Wan, J. L.; Huang, X. T.; Tang, Y. X.; Xiao, C.; Xu, H. B.; Yang, X. L.; Li, Z. F. iRGD-decorated reduction-responsive nanoclusters for targeted drug delivery. Nanoscale 2018, 10, 10514–10527.

    CAS  Google Scholar 

  32. Zhai, Y. H.; Liu, M.; Yang, T.; Luo, J.; Wei, C. G.; Shen, J. K.; Song, X.; Ke, H. T.; Sun, P.; Guo, M. et al. Self-activated arsenic manganite nanohybrids for visible and synergistic thermo/immunoarsenotherapy. J. Control. Release 2022, 350, 761–776.

    CAS  Google Scholar 

  33. Iqbal, H.; Yang, T.; Li, T.; Zhang, M. Y.; Ke, H. T.; Ding, D. W.; Deng, Y. B.; Chen, H. B. Serum protein-based nanoparticles for cancer diagnosis and treatment. J. Control. Release 2021, 329, 997–1022.

    CAS  Google Scholar 

  34. Li, Y. H.; Wu, Y. X.; Chen, J. T.; Wan, J. L.; Xiao, C.; Guan, J. K.; Song, X. L.; Li, S. Y.; Zhang, M. M.; Cui, H. C. et al. A simple glutathione-responsive turn-on theranostic nanoparticle for dual-modal imaging and chemo-photothermal combination therapy. Nano Lett. 2019, 19, 5806–5817.

    CAS  Google Scholar 

  35. Wang, X. X.; Ye, N. B.; Xu, C.; Xiao, C.; Zhang, Z. J.; Deng, Q. Y.; Li, S. Y.; Li, J. Y.; Li, Z. F.; Yang, X. L. Hyperbaric oxygen regulates tumor mechanics and augments abraxane and gemcitabine antitumor effects against pancreatic ductal adenocarcinoma by inhibiting cancer-associated fibroblasts. Nano Today 2022, 44, 101458.

    CAS  Google Scholar 

  36. Liu, X.; Ye, N. B.; Xiao, C.; Wang, X. X.; Li, S. Y.; Deng, Y. H.; Yang, X. Q.; Li, Z. F.; Yang, X. L. Hyperbaric oxygen regulates tumor microenvironment and boosts commercialized nanomedicine delivery for potent eradication of cancer stem-like cells. Nano Today 2021, 40, 101248.

    CAS  Google Scholar 

  37. Zhao, Y.; Xie, R. S.; Yodsanit, N.; Ye, M. Z.; Wang, Y. Y.; Gong, S. Q. Biomimetic fibrin-targeted and H2O2-responsive nanocarriers for thrombus therapy. Nano Today 2020, 35, 100986.

    CAS  Google Scholar 

  38. Gong, Z. R.; Chen, M.; Ren, Q. S.; Yue, X. L.; Dai, Z. F. Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduct. Target. Ther. 2020, 5, 12.

    Google Scholar 

  39. Zhang, Z. J.; Deng, Q. Y.; Xiao, C.; Li, Z. F.; Yang, X. L. Rational design of nanotherapeutics based on the five features principle for potent elimination of cancer stem cells. Acc. Chem. Res. 2022, 55, 526–536.

    CAS  Google Scholar 

  40. Li, R.; Li, Y. P.; Zhang, J. H.; Liu, Q. H.; Wu, T.; Zhou, J.; Huang, H.; Tang, Q.; Huang, C. Y.; Huang, Y. et al. Targeted delivery of celastrol to renal interstitial myofibroblasts using fibronectin-binding liposomes attenuates renal fibrosis and reduces systemic toxicity. J. Control. Release 2020, 320, 32–44.

    CAS  Google Scholar 

  41. Chen, X. M.; Song, E. W. Turning foes to friends: Targeting cancer-associated fibroblasts. Nat. Rev. Drug Discov. 2019, 18, 99–115.

    CAS  Google Scholar 

  42. Jain, R. K.; Martin, J. D.; Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 2014, 16, 321–346.

    CAS  Google Scholar 

  43. Nia, H. T.; Liu, H.; Seano, G.; Datta, M.; Jones, D.; Rahbari, N.; Incio, J.; Chauhan, V. P.; Jung, K.; Martin, J. D. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 2017, 1, 0004.

    CAS  Google Scholar 

  44. Mpekris, F.; Voutouri, C.; Baish, J. W.; Duda, D. G.; Munn, L. L.; Stylianopoulos, T.; Jain, R. K. Combining microenvironment normalization strategies to improve cancer immunotherapy. Proc. Natl. Acad. Sci. USA 2020, 117, 3728–3737.

    CAS  Google Scholar 

  45. Visvader, J. E.; Lindeman, G. J. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell 2012, 10, 717–728.

    CAS  Google Scholar 

  46. Hurtado, P.; Martínez-Pena, I.; Piñeiro, R. Dangerous liaisons: Circulating tumor cells (CTCs) and cancer-associated fibroblasts (CAFs). Cancers (Basel) 2020, 12, 2861.

    CAS  Google Scholar 

  47. Plaks, V.; Kong, N.; Werb, Z. The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015, 16, 225–238.

    CAS  Google Scholar 

  48. Khan, I. N.; Ullah, N.; Hussein, D.; Saini, K. S. Current and emerging biomarkers in tumors of the central nervous system: Possible diagnostic, prognostic and therapeutic applications. Semin. Cancer Biol. 2018, 52, 85–102.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Research Core Facilities for Life Science (HUST), the Optical Bioimaging Core Facility of WNLO-HUST, and the Analytical and Testing Center of HUST for the facility support. This work was financially supported by grants from the National Research and Development Program of China (Nos. 2018YFA0208900, 2020YFA0211200, and 2020YFA0710700), the National Natural Science Foundation of China (Nos. 82172757 and 31972927), the Scientific Research Foundation of Huazhong University of Science and Technology (No. 3004170130), the Program for HUST Academic Frontier Youth Team (No. 2018QYTD01), and the HCP Program for HUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zifu Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wang, H., Yang, H. et al. Targeting cancer-associated fibroblasts with hydroxyethyl starch nanomedicine boosts cancer therapy. Nano Res. 16, 7323–7336 (2023). https://doi.org/10.1007/s12274-023-5394-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5394-7

Keywords

Navigation