Skip to main content
Log in

A metal-organic framework-based redox homeostasis disruptor selectively potentiate the cytotoxicity of dihydroartemisinin for cancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Artemisinin and its derivatives have emerged as promising therapeutic agents for cancer therapy by endogenous iron-mediated generation of free radicals. However, the enhanced antioxidant defense systems in cancer cells provide them with resistance to oxidative damage, greatly antagonizing the therapeutic efficacy that relies on inducing oxidative stress. Herein, a metal-organic framework (MOF)-based nanoplatform (CMD) is constructed to disrupt the cellular redox homeostasis and selectively potentiate the cytotoxicity of dihydroartemisinin for cancer therapy. In cancer cells, the copper(II) sites in the MOF nanocarrier of CMD can efficiently weaken the cellular antioxidant capacity by depleting the overexpressed glutathione, simultaneously leading to the decomposition of the framework structure and the release of the encapsulated dihydroartemisinin. As a result, the damaged antioxidant defense system of cancer cells reduces its effect on oxidative stress alleviation and strengthens the therapeutic efficacy of dihydroartemisinin. On contrast, the low concentration of cellular glutathione in normal cells protects them from dihydroartemisinin-induced cytotoxicity by decelerating the drug release. In vivo results demonstrate that CMD could completely suppress the tumor growth in mice and show no evidence of toxicity, providing an effective strategy for the practical usage of dihydroartemisinin in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaturvedi, D.; Goswami, A.; Pratim Saikia, P.; Barua, N. C.; Rao, P. G. Artemisinin and its derivatives: A novel class of anti-malarial and anti-cancer agents. Chem. Soc. Rev. 2010, 39, 435–454.

    Article  CAS  Google Scholar 

  2. Wan, X. Y.; Zhong, H.; Pan, W.; Li, Y. H.; Chen, Y. Y.; Li, N.; Tang, B. Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3 mineralized metal-organic framework. Angew. Chem., Int. Ed. 2019, 58, 14134–14139.

    Article  CAS  Google Scholar 

  3. Chen, G. Q.; Benthani, F. A.; Wu, J.; Liang, D. G.; Bian, Z. X.; Jiang, X. J. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 2020, 27, 242–254.

    Article  CAS  Google Scholar 

  4. Gorrini, C.; Harris, I. S.; Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947.

    Article  CAS  Google Scholar 

  5. Wang, H.; Liu, X. C.; Yan, X. Y.; Fan, J. W.; Li, D. W.; Ren, J. S.; Qu, X. G. A MXene-derived redox homeostasis regulator perturbs the Nrf2 antioxidant program for reinforced sonodynamic therapy. Chem. Sci. 2022, 13, 6704–6714.

    Article  CAS  Google Scholar 

  6. Chen, X.; Kang, R.; Kroemer, G.; Tang, D. L. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 2021, 18, 280–296.

    Article  CAS  Google Scholar 

  7. Xiong, Y. X.; Xiao, C.; Li, Z. F.; Yang, X. L. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem. Soc. Rev. 2021, 50, 6013–6041.

    Article  CAS  Google Scholar 

  8. Fan, H. H.; Yan, G. B.; Zhao, Z. L.; Hu, X. X.; Zhang, W. H.; Liu, H.; Fu, X. Y.; Fu, T.; Zhang, X. B.; Tan, W. H. A smart photosensitizer-manganese dioxide nanosystem for enhanced photodynamic therapy by reducing glutathione levels in cancer cells. Angew. Chem., Int. Ed. 2016, 55, 5477–5482.

    Article  CAS  Google Scholar 

  9. Ju, E. G.; Dong, K.; Chen, Z. W.; Liu, Z.; Liu, C. Q.; Huang, Y. Y.; Wang, Z. Z.; Pu, F.; Ren, J. S.; Qu, X. G. Copper(II)-graphitic carbon nitride triggered synergy: Improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy. Angew. Chem., Int. Ed. 2016, 55, 11467–11471.

    Article  CAS  Google Scholar 

  10. Zhang, W.; Lu, J.; Gao, X. N.; Li, P.; Zhang, W.; Ma, Y.; Wang, H.; Tang, B. Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with CuII as the active center. Angew. Chem., Int. Ed. 2018, 57, 4891–4896.

    Article  CAS  Google Scholar 

  11. Gong, F.; Cheng, L.; Yang, N. L.; Betzer, O.; Feng, L. Z.; Zhou, Q.; Li, Y. G.; Chen, R. H.; Popovtzer, R.; Liu, Z. Ultrasmall oxygen-deficient bimetallic oxide MnWOx nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Adv. Mater. 2019, 31, 1900730.

    Article  Google Scholar 

  12. Gong, N. Q.; Ma, X. W.; Ye, X. X.; Zhou, Q. F.; Chen, X. A.; Tan, X. L.; Yao, S. K.; Huo, S. D.; Zhang, T. B.; Chen, S. Z. et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotechnol. 2019, 14, 379–387.

    Article  CAS  Google Scholar 

  13. Zhao, B.; Wang, Y. S.; Yao, X. X.; Chen, D. Y.; Fan, M. J.; Jin, Z. K.; He, Q. J. Photocatalysis-mediated drug-free sustainable cancer therapy using nanocatalyst. Nat. Commun. 2021, 12, 1345.

    Article  CAS  Google Scholar 

  14. Liu, C. H.; Cao, Y.; Cheng, Y. R.; Wang, D. D.; Xu, T. L.; Su, L.; Zhang, X. J.; Dong, H. F. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat. Commun. 2020, 11, 1735.

    Article  CAS  Google Scholar 

  15. Niu, B. Y.; Liao, K. X.; Zhou, Y. X.; Wen, T.; Quan, G. L.; Pan, X.; Wu, C. B. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 2021, 277, 121110.

    Article  CAS  Google Scholar 

  16. Liu, L. J.; Wei, Y. C.; Zhai, S. D.; Chen, Q.; Xing, D. Dihydroartemisinin and transferrin dual-dressed nano-graphene oxide for a pH-triggered chemotherapy. Biomaterials 2015, 62, 35–46.

    Article  CAS  Google Scholar 

  17. Dong, L.; Wang, C.; Zhen, W. Y.; Jia, X. D.; An, S. J.; Xu, Z. A.; Zhang, W.; Jiang, X. E. Biodegradable iron-coordinated hollow polydopamine nanospheres for dihydroartemisinin delivery and selectively enhanced therapy in tumor cells. J. Mater. Chem. B 2019, 7, 6172–6180.

    Article  CAS  Google Scholar 

  18. He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.

    Article  CAS  Google Scholar 

  19. Lu, K. D.; Aung, T.; Guo, N. N.; Weichselbaum, R.; Lin, W. B. Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 2018, 30, 1707634.

    Article  Google Scholar 

  20. Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater. 2018, 30, 1707365.

    Article  Google Scholar 

  21. Wu, M. X.; Yang, Y. W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134.

    Article  Google Scholar 

  22. Liu, J. T.; Huang, J.; Zhang, L.; Lei, J. P. Multifunctional metal-organic framework heterostructures for enhanced cancer therapy. Chem. Soc. Rev. 2021, 50, 1188–1218.

    Article  CAS  Google Scholar 

  23. Zheng, Q. L.; Liu, X. M.; Zheng, Y. F.; Yeung, K. W. K.; Cui, Z. D.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Wang, X. B.; Wu, S. L. The recent progress on metal-organic frameworks for phototherapy. Chem. Soc. Rev. 2021, 50, 5086–5125.

    Article  CAS  Google Scholar 

  24. Gao, P.; Chen, Y. Y.; Pan, W.; Li, N.; Liu, Z.; Tang, B. Antitumor agents based on metal-organic frameworks. Angew. Chem., Int. Ed. 2021, 60, 16763–16776.

    Article  CAS  Google Scholar 

  25. Wang, Y. B.; Xu, S. D.; Shi, L. L.; Teh, C.; Qi, G. B.; Liu, B. Cancer-cell-activated in situ synthesis of mitochondria-targeting AIE photosensitizer for precise photodynamic therapy. Angew. Chem., Int. Ed. 2021, 60, 14945–14953.

    Article  CAS  Google Scholar 

  26. Liu, Q.; Jin, L. N.; Sun, W. Y. Facile fabrication and adsorption property of a nano/microporous coordination polymer with controllable size and morphology. Chem. Commun. 2012, 48, 8814–8816.

    Article  CAS  Google Scholar 

  27. Wang, Y. B.; Wu, W. B.; Liu, J. J.; Manghnani, P. N.; Hu, F.; Ma, D.; Teh, C.; Wang, B.; Liu, B. Cancer-cell-activated photodynamic therapy assisted by Cu(II)-based metal-organic framework. ACS Nano 2019, 13, 6879–6890.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program of Science and Technology Development Plan of Jilin Province of China (No. 20200201099JC), and the National Natural Science Foundation of China (Nos. 21871249 and 22105197).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huan Wang, Deming Han or Jinsong Ren.

Electronic Supplementary Material

12274_2023_5385_MOESM1_ESM.pdf

A metal-organic framework-based redox homeostasis disruptor selectively potentiate the cytotoxicity of dihydroartemisinin for cancer therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Liu, X., Wang, Q. et al. A metal-organic framework-based redox homeostasis disruptor selectively potentiate the cytotoxicity of dihydroartemisinin for cancer therapy. Nano Res. 16, 7489–7495 (2023). https://doi.org/10.1007/s12274-023-5385-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5385-8

Keywords

Navigation