Skip to main content
Log in

Recent progress in COF-based electrode materials for rechargeable metal-ion batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) have emerged as promising electrode materials for rechargeable metal-ion batteries and have gained much attention in recent years due to their high specific surface area, inherent porosity, tunable molecular structure, robust framework, and abundant active sites. Moreover, compared with inorganic materials and small organic molecules, COFs have the advantages of multi-electron transfer, short pathways, and high cycling stability. Although great progress on COF-based electrodes has been made, the corresponding electrochemical performance is still far from satisfactory for practical applications. In this review, we first summarize the fundamental background of COFs, including the species of COFs (different active covalent bonds) and typical synthesis methods of COFs. Then, the key challenges and the latest research progress of COF-based cathodes and anodes for metal-ion batteries are reviewed, including Li-ion batteries, Na-ion batteries, K-ion batteries, Zn-ion batteries, et al. Moreover, the effective strategies to enhance electrochemical performance of COF-based electrodes are presented. Finally, this review also covers the typical superiorities of COFs used in energy devices, as well as providing some perspectives and outlooks in this field. We hope this review can provide fundamental guidance for the development of COF-based electrodes for metal-ion batteries in the further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N. R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D. et al. Fast charging of lithium-ion batteries: A review of materials aspects. Adv. Energy Mater. 2021, 11, 2101126.

    CAS  Google Scholar 

  2. Cui, X.; Dong, H. H.; Chen, S. Q.; Wu, M. H.; Wang, Y. Progress and perspective of metal-and covalent-organic frameworks and their derivatives for lithium-ion batteries. Batteries Supercaps 2021, 4, 72–97.

    CAS  Google Scholar 

  3. He, J. Q.; Lu, C. H.; Jiang, H. B.; Han, F.; Shi, X.; Wu, J. X.; Wang, L. Y.; Chen, T. Q.; Wang, J. J.; Zhang, Y. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 2021, 597, 57–63.

    CAS  Google Scholar 

  4. Wang, L.; Liu, S. K.; Hu, J.; Zhang, X. N.; Li, X.; Zhang, G. H.; Li, Y. J.; Zheng, C. M.; Hong, X. B.; Duan, H. G. Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li-S pouch cells. Nano Res. 2021, 14, 1355–1363.

    CAS  Google Scholar 

  5. Angeloudis, A.; Kramer, S. C.; Hawkins, N.; Piggott, M. D. On the potential of linked-basin tidal power plants: An operational and coastal modelling assessment. Renew. Energy 2020, 155, 876–888.

    Google Scholar 

  6. Javed, M. S.; Ma, T.; Jurasz, J.; Amin, M. Y. Solar and wind power generation systems with pumped hydro storage: Review and future perspectives. Renew. Energy 2020, 148, 176–192.

    Google Scholar 

  7. Wei, S. H.; Chang, S. F.; Qian, J.; Xu, X. X. Selective cocatalyst deposition on ZnTiO3−xNy hollow nanospheres with efficient charge separation for solar-driven overall water splitting. Small 2021, 17, 2100084.

    CAS  Google Scholar 

  8. Li, K.; Liang, M. Y.; Wang, H.; Wang, X. H.; Huang, Y. S.; Coelho, J.; Pinilla, S.; Zhang, Y. L.; Qi, F. W.; Nicolosi, V. et al. 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 2020, 30, 2000842.

    CAS  Google Scholar 

  9. Xiao, P. T.; Li, S.; Yu, C. B.; Wang, Y.; Xu, Y. X. Interface engineering between the metal-organic framework nanocrystal and graphene toward ultrahigh potassium-ion storage performance. ACS Nano 2020, 14, 10210–10218.

    CAS  Google Scholar 

  10. Xie, J.; Lu, Y. C. A retrospective on lithium-ion batteries. Nat. Commun. 2020, 11, 2499.

    CAS  Google Scholar 

  11. Li, H. L.; Lv, T.; Sun, H. H.; Qian, G. J.; Li, N.; Yao, Y.; Chen, T. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte. Nat. Commun. 2019, 10, 536.

    CAS  Google Scholar 

  12. Wang, K. X.; Hui, K. N.; Hui, K. S.; Peng, S. J.; Xu, Y. X. Recent progress in metal-organic framework/graphene-derived materials for energy storage and conversion: Design, preparation, and application. Chem. Sci. 2021, 12, 5737–5766.

    CAS  Google Scholar 

  13. Sun, T.; Liang, Y.; Xu, Y. X. Rapid, ordered polymerization of crystalline semiconducting covalent triazine frameworks. Angew. Chem., Int. Ed. 2022, 61, e202113926.

    CAS  Google Scholar 

  14. Sun, T.; Li, Z. J.; Yang, X.; Wang, S.; Zhu, Y. H.; Zhang, X. B. Imine-rich poly(o-phenylenediamine) as high-capacity trifunctional organic electrode for alkali-ion batteries. CCS Chem. 2019, 1, 365–372.

    CAS  Google Scholar 

  15. Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

    Google Scholar 

  16. Wei, C. L.; Tan, L. W.; Zhang, Y. C.; Zhang, K.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Covalent organic frameworks and their derivatives for better metal anodes in rechargeable batteries. ACS Nano 2021, 15, 12741–12767.

    CAS  Google Scholar 

  17. Piątek, J.; Afyon, S.; Budnyak, T. M.; Budnyk, S.; Sipponen, M. H.; Slabon, A. Sustainable Li-ion batteries: Chemistry and recycling. Adv. Energy Mater. 2021, 11, 2003456.

    Google Scholar 

  18. Liu, B. Q.; Zhang, Q.; Li, Y. Q.; Hao, Y. H.; Ali, U.; Li, L.; Zhang, L. Y.; Wang, C. G.; Su, Z. M. Realizing complete solid-solution reaction to achieve temperature independent LiFePO4 for high rate and low temperature Li-ion batteries. CCS Chem. 2023, 5, 209–220.

    CAS  Google Scholar 

  19. Wang, L.; Nie, Y.; Zhang, X. N.; Zhang, G. H.; Lu, Q. H.; Duan, H. G. Pomegranate-inspired Zn2Ti3O8/TiO2@C nanospheres with pseudocapacitive effect for ultra-stable lithium-ion batteries. Chem. Eng. J. 2021, 418, 129227.

    CAS  Google Scholar 

  20. Jin, T.; Li, H. X.; Zhu, K. J.; Wang, P. F.; Liu, P.; Jiao, L. F. Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 2020, 49, 2342–2377.

    Google Scholar 

  21. Rajagopalan, R.; Tang, Y.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

    CAS  Google Scholar 

  22. Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

    CAS  Google Scholar 

  23. Fang, Y. J.; Zhang, J. X.; Zhong, F. P.; Feng, X. M.; Chen, W. H.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Amorphous NaVOPO4 as a high-rate and ultrastable cathode material for sodium-ion batteries. CCS Chem. 2021, 3, 2428–2436.

    CAS  Google Scholar 

  24. Niu, Y. B.; Yin, Y. X.; Wang, W. P.; Wang, P. F.; Ling, W.; Xiao, Y.; Guo, Y. G. In situ copolymerizated gel polymer electrolyte with cross-linked network for sodium-ion batteries. CCS Chem. 2020, 2, 589–597.

    CAS  Google Scholar 

  25. Xie, J. P.; Li, J. L.; Li, X. D.; Lei, H.; Zhuo, W. C.; Li, X. B.; Hong, G.; Hui, K. N.; Pan, L. K.; Mai, W. J. Ultrahigh “relative energy density” and mass loading of carbon cloth anodes for K-ion batteries. CCS Chem. 2021, 3, 791–799.

    CAS  Google Scholar 

  26. Yi, Z.; Fang, D. L.; Zhang, W. Q.; Tian, J.; Chen, S. M.; Liang, J. B.; Lin, N.; Qian, Y. T. Revealing quasi-1D volume expansion in Na-/K-ion battery anodes: A case study of Sb2O3 microbelts. CCS Chem. 2021, 3, 1306–1315.

    CAS  Google Scholar 

  27. Lee, S.; Hong, J.; Kang, K. Redox-active organic compounds for future sustainable energy storage system. Adv. Energy Mater. 2020, 10, 2001445.

    CAS  Google Scholar 

  28. Xu, J. S.; He, Y. F.; Bi, S.; Wang, M.; Yang, P.; Wu, D. Q.; Wang, J. J.; Zhang, F. An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance microsupercapacitor. Angew. Chem., Int. Ed. 2019, 131, 12193–12197.

    Google Scholar 

  29. Gao, H.; Zhu, Q.; Neale, A. R.; Bahri, M.; Wang, X.; Yang, H. F.; Liu, L. J.; Clowes, R.; Browning, N. D.; Sprick, R. S. et al. Integrated covalent organic framework/carbon nanotube composite as Li-ion positive electrode with ultra-high rate performance. Adv. Energy Mater. 2021, 11, 2101880.

    CAS  Google Scholar 

  30. Xu, J. Y.; Xu, Y. F.; Lai, C. L.; Xia, T. T.; Zhang, B. N.; Zhou, X. S. Challenges and perspectives of covalent organic frameworks for advanced alkali-metal ion batteries. Sci. China Chem. 2021, 64, 1267–1282.

    CAS  Google Scholar 

  31. Chen, X. D.; Sun, W. W.; Wang, Y. Covalent organic frameworks for next-generation batteries. ChemElectroChem 2020, 7, 3905–3926.

    CAS  Google Scholar 

  32. Li, J.; Jing, X. C.; Li, Q. Q.; Li, S. W.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565–3604.

    CAS  Google Scholar 

  33. Niu, C. Q.; Xu, Y. X. Two-dimensional polymers: Preparation, assembly and high-efficiency electrochemical applications. Acta Polym. Sin. 2021, 52, 549–564.

    CAS  Google Scholar 

  34. Niu, C. Q.; Luo, W. J.; Dai, C. M.; Yu, C. B.; Xu, Y. X. High-voltage-tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes. Angew. Chem., Int. Ed. 2021, 60, 24915–24923.

    CAS  Google Scholar 

  35. Gong, L.; Yang, X. Y.; Gao, Y.; Yang, G. X.; Yu, Z. H.; Fu, X. Z.; Wang, Y. H.; Qi, D. D.; Bian, Y. Z.; Wang, K. et al. Two-dimensional covalent organic frameworks with p-and bipolar-type redox-active centers for organic high-performance Li-ion battery cathodes. J. Mater. Chem. A 2022, 10, 16595–16601.

    CAS  Google Scholar 

  36. Tong, Z. Q.; Wang, H.; Kang, T. X.; Wu, Y.; Guan, Z. Q.; Zhang, F.; Tang, Y. B.; Lee, C. S. Ionic covalent organic frameworks with tailored anionic redox chemistry and selective ion transport for high-performance Na-ion cathodes. J. Energy Chem. 2022, 75, 441–447.

    CAS  Google Scholar 

  37. Li, T.; Yan, X. D.; Liu, Y.; Zhang, W. D.; Fu, Q. T.; Zhu, H. Y.; Li, Z. J.; Gu, Z. G. A 2D covalent organic framework involving strong intramolecular hydrogen bonds for advanced supercapacitors. Polym. Chem. 2020, 11, 47–52.

    CAS  Google Scholar 

  38. Tong, Y. F.; Wang, X. H.; Zhang, Y.; Huang, W. W. Recent advances of covalent organic frameworks in lithium ion batteries. Inorg. Chem. Front. 2021, 8, 558–571.

    CAS  Google Scholar 

  39. An, N.; Guo, Z.; Xin, J.; He, Y. Y.; Xie, K. F.; Sun, D. M.; Dong, X. Y.; Hu, Z. A. Hierarchical porous covalent organic framework/graphene aerogel electrode for high-performance supercapacitors. J. Mater. Chem. A 2021, 9, 16824–16833.

    CAS  Google Scholar 

  40. He, Y. Y.; An, N.; Meng, C. C.; Xie, K. F.; Wang, X. T.; Dong, X. Y.; Sun, D. M.; Yang, Y. Y.; Hu, Z. A. High-density active site COFs with a flower-like morphology for energy storage applications. J. Mater. Chem. A 2022, 10, 11030–11038.

    CAS  Google Scholar 

  41. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

    Google Scholar 

  42. El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Designed synthesis of 3D covalent organic frameworks. Science 2007, 316, 268–272.

    CAS  Google Scholar 

  43. Wang, H.; Wang, H.; Wang, Z. W.; Tang, L.; Zeng, G. M.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C. Y.; Li, X. Y. et al. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165.

    CAS  Google Scholar 

  44. Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. L. A photoconductive covalent organic framework: Self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem., Int. Ed. 2009, 48, 5439–5442.

    CAS  Google Scholar 

  45. Spitler, E. L.; Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2010, 2, 672–677.

    CAS  Google Scholar 

  46. Dalapati, S.; Jin, E. Q.; Addicoat, M.; Heine, T.; Jiang, D. L. Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 2016, 138, 5797–5800.

    CAS  Google Scholar 

  47. Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Edit. 2008, 47, 3450–3453.

    CAS  Google Scholar 

  48. Liu, J. J.; Zan, W.; Li, K.; Yang, Y.; Bu, F. X.; Xu, Y. X. Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile. J. Am. Chem. Soc. 2017, 139, 11666–11669.

    CAS  Google Scholar 

  49. Liu, M. Y.; Huang, Q.; Wang, S. L.; Li, Z. Y.; Li, B. Y.; Jin, S. B.; Tan, B. E. Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers. Angew. Chem., Int. Ed. 2018, 57, 11968–11972.

    CAS  Google Scholar 

  50. Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O’Keeffe, M.; Yaghi, O. M. A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 2009, 131, 4570–4571.

    CAS  Google Scholar 

  51. Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822.

    CAS  Google Scholar 

  52. Wan, S.; Gándara, F.; Asano, A.; Furukawa, H.; Saeki, A.; Dey, S. K.; Liao, L.; Ambrogio, M. W.; Botros, Y. Y.; Duan, X. F. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 2011, 23, 4094–4097.

    CAS  Google Scholar 

  53. Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 2011, 133, 11478–11481.

    CAS  Google Scholar 

  54. Bunck, D. N.; Dichtel, W. R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 14952–14955.

    CAS  Google Scholar 

  55. Qian, C.; Zhou, W. Q.; Qiao, J. S.; Wang, D. D.; Li, X.; Teo, W. L.; Shi, X. Y.; Wu, H. W.; Di, J.; Wang, H. et al. Linkage engineering by harnessing supramolecular interactions to fabricate 2D hydrazone-linked covalent organic framework platforms toward advanced catalysis. J. Am. Chem. Soc. 2020, 142, 18138–18149.

    CAS  Google Scholar 

  56. Dalapati, S.; Jin, S. B.; Gao, J.; Xu, Y. H.; Nagai, A.; Jiang, D. L. An azine-linked covalent organic framework. J. Am. Chem. Soc. 2013, 135, 17310–17313.

    CAS  Google Scholar 

  57. Zhu, Y. L.; Wan, S.; Jin, Y. H.; Zhang, W. Desymmetrized vertex design for the synthesis of covalent organic frameworks with periodically heterogeneous pore structures. J. Am. Chem. Soc. 2015, 137, 13772–13775.

    CAS  Google Scholar 

  58. Alahakoon, S. B.; Thompson, C. M.; Nguyen, A. X.; Occhialini, G.; McCandless, G. T.; Smaldone, R. A. An azine-linked hexaphenylbenzene based covalent organic framework. Chem. Commun. 2016, 52, 2843–2845.

    CAS  Google Scholar 

  59. Li, Z. P.; Zhi, Y. F.; Feng, X.; Ding, X. S.; Zou, Y. C.; Liu, X. M.; Mu, Y. An azine-linked covalent organic framework: Synthesis, characterization and efficient gas storage. Chem. -Eur. J. 2015, 21, 12079–12084.

    CAS  Google Scholar 

  60. Haase, F.; Banerjee, T.; Savasci, G.; Ochsenfeld, C.; Lotsch, B. V. Structure-property-activity relationships in a pyridine containing azine-linked covalent organic framework for photocatalytic hydrogen evolution. Faraday Discuss. 2017, 201, 247–264.

    CAS  Google Scholar 

  61. Kim, G.; Yang, J.; Nakashima, N.; Shiraki, T. Highly microporous nitrogen-doped carbon synthesized from azine-linked covalent organic framework and its supercapacitor function. Chem. -Eur. J. 2017, 23, 17504–17510.

    CAS  Google Scholar 

  62. Jin, S. B.; Furukawa, K.; Addicoat, M.; Chen, L.; Takahashi, S.; Irle, S.; Nakamura, T.; Jiang, D. L. Large pore donor-acceptor covalent organic frameworks. Chem. Sci. 2013, 4, 4505–4511.

    CAS  Google Scholar 

  63. Huang, N.; Wang, P.; Jiang, D. Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1.

  64. Royuela, S.; Martínez-Periñán, E.; Arrieta, M. P.; Martínez, J. I.; Ramos, M. M.; Zamora, F.; Lorenzo, E.; Segura, J. L. Oxygen reduction using a metal-free naphthalene diimide-based covalent organic framework electrocatalyst. Chem. Commun. 2020, 56, 1267–1270.

    CAS  Google Scholar 

  65. Veldhuizen, H.; Van Der Zwaag, S.; Van Der Veen, M. A. Impact of flow-induced disturbances during synthesis on the photophysical properties of naphthalene diimide covalent organic frameworks. Micropor. Mesopor. Mater. 2022, 343, 112122.

    CAS  Google Scholar 

  66. Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012, 134, 19524–19527.

    CAS  Google Scholar 

  67. DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruña, H. D.; Dichtel, W. R. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 2013, 135, 16821–16824.

    CAS  Google Scholar 

  68. Rao, M. R.; Fang, Y.; De Feyter, S.; Perepichka, D. F. Conjugated covalent organic frameworks via michael addition-elimination. J. Am. Chem. Soc. 2017, 139, 2421–2427.

    CAS  Google Scholar 

  69. Jin, E. Q.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q. H. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 2017, 357, 673–676.

    CAS  Google Scholar 

  70. Jin, E. Q.; Li, J.; Geng, K. Y.; Jiang, Q. H.; Xu, H.; Xu, Q.; Jiang, D. L. Designed synthesis of stable light-emitting two-dimensional sp2 carbon-conjugated covalent organic frameworks. Nat. Commun. 2018, 9, 4143.

    Google Scholar 

  71. Chen, R. F.; Shi, J. L.; Ma, Y.; Lin, G. Q.; Lang, X. J.; Wang, C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem., Int. Ed. 2019, 58, 6430–6434.

    CAS  Google Scholar 

  72. Salehi, M.; Parvarinezhad, S.; Khademinia, S. Solid state synthesis of MgAl2O4 nanomaterials and solar light-induced photocatalytic removal of Malachite green. Int. J. Nano Dimens. 2019, 10, 89–104.

    Google Scholar 

  73. Zhou, D.; Tan, X. Y.; Wu, H. M.; Tian, L. H.; Li, M. Synthesis of C−C bonded two-dimensional conjugated covalent organic framework films by suzuki polymerization on a liquid-liquid interface. Angew. Chem., Int. Ed. 2019, 131, 1390–1395.

    Google Scholar 

  74. Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions. J. Am. Chem. Soc. 2013, 135, 10470–10474.

    CAS  Google Scholar 

  75. Campbell, N. L.; Clowes, R.; Ritchie, L. K.; Cooper, A. I. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem. Mater. 2009, 21, 204–206.

    CAS  Google Scholar 

  76. Ren, S. J.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv. Mater. 2012, 24, 2357–2361.

    CAS  Google Scholar 

  77. Ding, Y. S.; Wang, Y.; Su, Y. J.; Yang, Z.; Liu, J. Q.; Hua, X. L.; Wei, H. A novel channel-wall engineering strategy for two-dimensional cationic covalent organic frameworks: Microwave-assisted anion exchange and enhanced carbon dioxide capture. Chin. Chem. Lett. 2020, 31, 193–196.

    CAS  Google Scholar 

  78. Maschita, J.; Banerjee, T.; Savasci, G.; Haase, F.; Ochsenfeld, C.; Lotsch, B. V. Ionothermal synthesis of imide-linked covalent organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 15750–15758.

    CAS  Google Scholar 

  79. Yang, S. T.; Kim, J.; Cho, H. Y.; Kim, S.; Ahn, W. S. Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Adv. 2012, 2, 10179–10181.

    CAS  Google Scholar 

  80. Kim, S.; Park, C.; Lee, M.; Song, I.; Kim, J.; Lee, M.; Jung, J.; Kim, Y.; Lim, H.; Choi, H. C. Rapid photochemical synthesis of sea-urchin-shaped hierarchical porous COF-5 and its lithography-free patterned growth. Adv. Funct. Mater. 2017, 27, 1700925.

    Google Scholar 

  81. Zhang, M. X.; Chen, J. C.; Zhang, S. T.; Zhou, X. Q.; He, L. W.; Sheridan, M. V.; Yuan, M. J.; Zhang, M. J.; Chen, L.; Dai, X. et al. Electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions. J. Am. Chem. Soc. 2020, 142, 9169–9174.

    CAS  Google Scholar 

  82. Ding, S. Y.; Cui, X. H.; Feng, J.; Lu, G. X.; Wang, W. Facile synthesis of −C=N− linked covalent organic frameworks under ambient conditions. Chem. Commun. 2017, 53, 11956–11959.

    CAS  Google Scholar 

  83. Xu, C.; Reeves, P. J.; Jacquet, Q.; Grey, C. P. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 2021, 11, 2003404.

    CAS  Google Scholar 

  84. Zhai, L. P.; Li, G. J.; Yang, X. B.; Park, S.; Han, D. D.; Mi, L. W.; Wang, Y. J.; Li, Z. P.; Lee, S. Y. 30 Li+-accommodating covalent organic frameworks as ultralong cyclable high-capacity Li-ion battery electrodes. Adv. Funct. Mater. 2022, 32, 2108798.

    CAS  Google Scholar 

  85. Wen, Y. C.; Wang, X. S.; Yang, Y.; Liu, M. Z.; Tu, W. Q.; Xu, M. Q.; Sun, G. Z.; Kawaguchi, S.; Cao, G. Z.; Li, W. S. Covalent organic framework-regulated ionic transportation for high-performance lithium-ion batteries. J. Mater. Chem. A 2019, 7, 26540–26548.

    CAS  Google Scholar 

  86. Huang, W. H.; Li, X. M.; Yang, X. F.; Zhang, X. X.; Wang, H. H.; Wang, H. The recent progress and perspectives on metal- and covalent-organic framework based solid-state electrolytes for lithium-ion batteries. Mater. Chem. Front. 2021, 5, 3593–3613.

    CAS  Google Scholar 

  87. Hu, Y. M.; Wayment, L. J.; Haslam, C.; Yang, X. Y.; Lee, S. H.; Jin, Y. H.; Zhang, W. Covalent organic framework based lithium-ion battery: Fundamental, design and characterization. EnergyChem 2021, 3, 100048.

    CAS  Google Scholar 

  88. Xu, F.; Jin, S. B.; Zhong, H.; Wu, D. C.; Yang, X. Q.; Chen, X.; Wei, H.; Fu, R. W.; Jiang, D. L. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci. Rep. 2015, 5, 8225.

    CAS  Google Scholar 

  89. Luo, Z. Q.; Liu, L. J.; Ning, J. X.; Lei, K. X.; Lu, Y.; Li, F. J.; Chen, J. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 9443–9446.

    CAS  Google Scholar 

  90. Wang, Z. L.; Li, Y. J.; Liu, P. J.; Qi, Q. Y.; Zhang, F.; Lu, G. L.; Zhao, X.; Huang, X. Y. Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries. Nanoscale 2019, 11, 5330–5335.

    CAS  Google Scholar 

  91. Wu, M. M.; Zhao, Y.; Zhao, R. Q.; Zhu, J.; Liu, J.; Zhang, Y. M.; Li, C. X.; Ma, Y. F.; Zhang, H. T.; Chen, Y. S. Chemical design for both molecular and morphology optimization toward high-performance lithium-ion batteries cathode material based on covalent organic framework. Adv. Funct. Mater. 2022, 32, 2107703.

    CAS  Google Scholar 

  92. Jhulki, S.; Feriante, C. H.; Mysyk, R.; Evans, A. M.; Magasinski, A.; Raman, A. S.; Turcheniuk, K.; Barlow, S.; Dichtel, W. R.; Yushin, G. et al. A naphthalene diimide covalent organic framework: Comparison of cathode performance in lithium-ion batteries with amorphous cross-linked and linear analogues, and its use in aqueous lithium-ion batteries. ACS Appl. Energy Mater. 2021, 4, 350–356.

    CAS  Google Scholar 

  93. Shehab, M. K.; Weeraratne, K. S.; Huang, T.; Lao, K. U.; El-Kaderi, H. M. Exceptional sodium-ion storage by an aza-covalent organic framework for high energy and power density sodium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 15083–15091.

    CAS  Google Scholar 

  94. Sakaushi, K.; Hosono, E.; Nickerl, G.; Gemming, T.; Zhou, H. S.; Kaskel, S.; Eckert, J. Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nat. Commun. 2013, 4, 1485.

    Google Scholar 

  95. Shi, R. J.; Liu, L. J.; Lu, Y.; Wang, C. C.; Li, Y. X.; Li, L.; Yan, Z. H.; Chen, J. Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Nat. Commun. 2020, 11, 178.

    CAS  Google Scholar 

  96. Duan, J.; Wang, W. T.; Zou, D. G.; Liu, J.; Li, N.; Weng, J. Y.; Xu, L. P.; Guan, Y.; Zhang, Y. J.; Zhou, P. F. Construction of a few-layered COF@CNT composite as an ultrahigh rate cathode for low-cost K-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 31234–31244.

    CAS  Google Scholar 

  97. Li, S. W.; Liu, Y. Z.; Dai, L.; Li, S.; Wang, B.; Xie, J.; Li, P. F. A stable covalent organic framework cathode enables ultra-long cycle life for alkali and multivalent metal rechargeable batteries. Energy Storage Mater. 2022, 48, 439–446.

    Google Scholar 

  98. Qin, K. Q.; Huang, J. H.; Holguin, K.; Luo, C. Recent advances in developing organic electrode materials for multivalent rechargeable batteries. Energy Environ. Sci. 2020, 13, 3950–3992.

    CAS  Google Scholar 

  99. Huang, A. X.; Zhou, W. J.; Wang, A. R.; Chen, M. F.; Tian, Q. H.; Chen, J. Z. Molten salt synthesis of α-MnO2/Mn2O3 nanocomposite as a high-performance cathode material for aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 475–481.

    CAS  Google Scholar 

  100. Khayum, A.; Ghosh, M.; Vijayakumar, V.; Halder, A.; Nurhuda, M.; Kumar, S.; Addicoat, M.; Kurungot, S.; Banerjee, R. Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chem. Sci. 2019, 10, 8889–8894.

    Google Scholar 

  101. Ma, D. X.; Zhao, H. M.; Cao, F.; Zhao, H. H.; Li, J. X.; Wang, L.; Liu, K. A carbonyl-rich covalent organic framework as a high-performance cathode material for aqueous rechargeable zinc-ion batteries. Chem. Sci. 2022, 13, 2385–2390.

    CAS  Google Scholar 

  102. Wang, W. X.; Kale, V. S.; Cao, Z.; Lei, Y. J.; Kandambeth, S.; Zou, G. D.; Zhu, Y. P.; Abouhamad, E.; Shekhah, O.; Cavallo, L. et al. Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv. Mater. 2021, 33, 2103617.

    CAS  Google Scholar 

  103. Zheng, S. B.; Shi, D. J.; Yan, D.; Wang, Q. R.; Sun, T. J.; Ma, T.; Li, L.; He, D.; Tao, Z. L.; Chen, J. Orthoquinone-based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc-organic batteries. Angew. Chem., Int. Ed. 2022, 61, e202117511.

    CAS  Google Scholar 

  104. Sun, R. M.; Hou, S.; Luo, C.; Ji, X.; Wang, L. N.; Mai, L. Q.; Wang, C. S. A covalent organic framework for fast-charge and durable rechargeable Mg storage. Nano Lett. 2020, 20, 3880–3888.

    CAS  Google Scholar 

  105. Lu, H. Y.; Ning, F. Y.; Jin, R.; Teng, C.; Wang, Y.; Xi, K.; Zhou, D. S.; Xue, G. Two-dimensional covalent organic frameworks with enhanced aluminum storage properties. ChemSusChem 2020, 13, 3447–3454.

    CAS  Google Scholar 

  106. Bai, L. Y.; Gao, Q.; Zhao, Y. L. Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. J. Mater. Chem. A 2016, 4, 14106–14110.

    CAS  Google Scholar 

  107. Zhao, H. Z.; Chen, H.; Xu, C. Y.; Li, Z. H.; Ding, B.; Dou, H.; Zhang, X. G. Charge storage mechanism of an anthraquinone-derived porous covalent organic framework with multiredox sites as anode material for lithium-ion battery. ACS Appl. Energy Mater. 2021, 4, 11377–11385.

    CAS  Google Scholar 

  108. Zhao, G. F.; Zhang, Y. H.; Gao, Z. H.; Li, H. N.; Liu, S. M.; Cai, S.; Yang, X. F.; Guo, H.; Sun, X. L. Dual active site of the azo and carbonyl-modified covalent organic framework for high-performance Li storage. ACS Energy Lett. 2020, 5, 1022–1031.

    CAS  Google Scholar 

  109. Tong, Y. F.; Sun, Z. P.; Wang, J. W.; Huang, W. W.; Zhang, Q. C. Covalent organic framework containing dual redox centers as an efficient anode in Li-ion batteries. SmartMat, in press, https://doi.org/10.1002/smm2.1115.

  110. Zhao, H. Z.; Luo, D. R.; Xu, H.; He, W. J.; Ding, B.; Dou, H.; Zhang, X. G. A novel covalent organic framework with high-density imine groups for lithium storage as anode material in lithium-ion batteries. J. Mater. Sci. 2022, 57, 9980–9991.

    CAS  Google Scholar 

  111. Haldar, S.; Roy, K.; Nandi, S.; Chakraborty, D.; Puthusseri, D.; Gawli, Y.; Ogale, S.; Vaidhyanathan, R. High and reversible lithium ion storage in self-exfoliated triazole-triformyl phloroglucinol-based covalent organic nanosheets. Adv. Energy Mater. 2018, 8, 1702170.

    Google Scholar 

  112. Wu, M. M.; Zhao, Y.; Zhang, H. T.; Zhu, J.; Ma, Y. F.; Li, C. X.; Zhang, Y. M.; Chen, Y. S. A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries. Nano Res. 2022, 15, 9779–9784.

    CAS  Google Scholar 

  113. Yang, X. B.; Lin, C.; Han, D. D.; Li, G. J.; Huang, C.; Liu, J.; Wu, X. L.; Zhai, L. P.; Mi, L. W. In situ construction of redox-active covalent organic frameworks/carbon nanotube composites as anodes for lithium-ion batteries. J. Mater. Chem. A 2022, 10, 3989–3995.

    CAS  Google Scholar 

  114. Zhang, Y. C.; Wu, Y.; An, Y. L.; Wei, C. L.; Tan, L. W.; Xi, B. J.; Xiong, S. L.; Feng, J. K. Ultrastable and high-rate 2D siloxene anode enabled by covalent organic framework engineering for advanced lithium-ion batteries. Small Methods 2022, 6, 2200306.

    CAS  Google Scholar 

  115. Patra, B. C.; Das, S. K.; Ghosh, A.; K, A. R.; Moitra, P.; Addicoat, M.; Mitra, S.; Bhaumik, A.; Bhattacharya, S.; Pradhan, A. Covalent organic framework based microspheres as an anode material for rechargeable sodium batteries. J. Mater. Chem. A 2018, 6, 16655–16663.

    CAS  Google Scholar 

  116. Haldar, S.; Kaleeswaran, D.; Rase, D.; Roy, K.; Ogale, S.; Vaidhyanathan, R. Tuning the electronic energy level of covalent organic frameworks for crafting high-rate Na-ion battery anode. Nanoscale Horiz. 2020, 5, 1264–1273.

    CAS  Google Scholar 

  117. Van Der Jagt, R.; Vasileiadis, A.; Veldhuizen, H.; Shao, P. P.; Feng, X.; Ganapathy, S.; Habisreutinger, N. C.; Van Der Veen, M. A.; Wang, C.; Wagemaker, M. et al. Synthesis and structure-property relationships of polyimide covalent organic frameworks for carbon dioxide capture and (aqueous) sodium-ion batteries. Chem. Mater. 2021, 33, 818–833.

    CAS  Google Scholar 

  118. Bhadra, M.; Kandambeth, S.; Sahoo, M. K.; Addicoat, M.; Balaraman, E.; Banerjee, R. Triazine functionalized porous covalent organic framework for photo-organocatalytic E–Z isomerization of olefins. J. Am. Chem. Soc. 2019, 141, 6152–6156.

    CAS  Google Scholar 

  119. Ball, B.; Sarkar, P. Triazine- and keto-functionalized porous covalent organic framework as a promising anode material for Na-ion batteries: A first-principles study. J. Phys. Chem. C 2020, 124, 15870–15878.

    CAS  Google Scholar 

  120. Vedachalam, S.; Sekar, P.; Nithya, C.; Murugesh, N.; Karvembu, R. Dopant-free main group elements supported covalent organic-inorganic hybrid conducting polymer for sodium-ion battery application. ACS Appl. Energy Mater. 2022, 5, 557–566.

    CAS  Google Scholar 

  121. Li, S. Y.; Li, W. H.; Wu, X. L.; Tian, Y. Y.; Yue, J. Y.; Zhu, G. S. Pore-size dominated electrochemical properties of covalent triazine frameworks as anode materials for K-ion batteries. Chem. Sci. 2019, 10, 7695–7701.

    CAS  Google Scholar 

  122. Wolfson, E. R.; Schkeryantz, L.; Moscarello, E. M.; Fernandez, J. P.; Paszek, J.; Wu, Y. Y.; Hadad, C. M.; McGrier, P. L. Alkynyl-based covalent organic frameworks as high-performance anode materials for potassium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 41628–41636.

    CAS  Google Scholar 

  123. Luo, X. X.; Li, W. H.; Liang, H. J.; Zhang, H. X.; Du, K. D.; Wang, X. T.; Liu, X. F.; Zhang, J. P.; Wu, X. L. Covalent organic framework with highly accessible carbonyls and π-cation effect for advanced potassium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202117661.

    CAS  Google Scholar 

  124. Xu, Q.; Li, Q.; Guo, Y.; Luo, D.; Qian, J.; Li, X. P.; Wang, Y. Multiscale hierarchically engineered carbon nanosheets derived from covalent organic framework for potassium-ion batteries. Small Methods 2020, 4, 2000159.

    CAS  Google Scholar 

  125. Das, P.; Ball, B.; Sarkar, P. Theoretical investigation of a tetrazine based covalent organic framework as a promising anode material for sodium/calcium ion batteries. Phys. Chem. Chem. Phys. 2022, 24, 21729–21739.

    CAS  Google Scholar 

  126. Li, L. Y.; Zhang, G. B.; Deng, X. M.; Hao, J.; Zhao, X.; Li, H. F.; Han, C. P.; Li, B. H. A covalent organic framework for high-rate aqueous calcium-ion batteries. J. Mater. Chem. A 2022, 10, 20827–20836.

    CAS  Google Scholar 

  127. Abuzeid, H. R.; EL-Mahdy, A. F. M.; Kuo, S. W. Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant 2021, 6, 100054.

    CAS  Google Scholar 

  128. Sharma, R. K.; Yadav, P.; Yadav, M.; Gupta, R.; Rana, P.; Srivastava, A.; Zbořil, R.; Varma, R. S.; Antonietti, M.; Gawande, M. B. Recent development of covalent organic frameworks (COFs): Synthesis and catalytic (organic-electro-photo) applications. Mater. Horiz. 2020, 7, 411–454.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51872186), Project funded by China Postdoctoral Science Foundation (No. 2021M702316), and Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110999).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zebo Fang, Lei Wang or Yuxi Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Wang, J., Li, Y. et al. Recent progress in COF-based electrode materials for rechargeable metal-ion batteries. Nano Res. 16, 6753–6770 (2023). https://doi.org/10.1007/s12274-022-5366-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5366-3

Keywords

Navigation