Skip to main content
Log in

Liquid metal-assisted hydrothermal preparation of cobalt disulfide on the polymer tape surface for flexible sensor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nowadays, two-dimensional transition metal chalcogenides have become attractive materials for flexible wearable devices because of their intriguing chemistry characteristics and sensitivity to external stimuli. However, the growth of two-dimensional materials on polymer surfaces is generally carried out by the time-consuming and costly chemical vapor deposition method. Reducing the manufacturing and integration costs while improving the device performance remains to be challenging. Herein, we report a simple liquid metal-assisted hydrothermal method for the growth of two-dimensional nanomaterials on the polymer surface. Specifically, a layer of liquid metal was coated on commercial tape, while layered cobalt sulfide was grown on its surface by a simple one-step hydrothermal method. Different kinds of flexible sensors can be prepared, such as bending sensor, pressure sensor, and humidity sensor, which can be used to detect motion, writing, breathing, and other signals. This strategy can also be assigned to sensing signals on different objects, which may further expand and enrich the application of two-dimensional materials in sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.

    Google Scholar 

  2. Chen, J. W.; Zhu, Y. T.; Chang, X. H.; Pan, D.; Song, G.; Guo, Z. H.; Naik, N. Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 2021, 31, 2104686.

    CAS  Google Scholar 

  3. Jiang, S.; Liu, X. J.; Liu, J. P.; Ye, D.; Duan, Y. Q.; Li, K.; Yin, Z. P.; Huang, Y. A. Flexible metamaterial electronics. Adv. Mater., in press, https://doi.org/10.1002/adma.202200070.

  4. Ates, H. C.; Nguyen, P. Q.; Gonzalez-Macia, L.; Morales-Narváez, E.; Güder, F.; Collins, J. J.; Dincer, C. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887–907.

    Google Scholar 

  5. Wang, X. L.; Guo, R.; Liu, J. Liquid metal based soft robotics: Materials, designs, and applications. Adv. Mater. Technol. 2019, 4, 1800549.

    Google Scholar 

  6. Shi, Z. Y.; Meng, L. X.; Shi, X. L.; Li, H. P.; Zhang, J. Z.; Sun, Q. Q.; Liu, X. Y.; Chen, J. Z.; Liu, S. R. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 2022, 14, 141.

    CAS  Google Scholar 

  7. Heng, W. Z.; Solomon, S.; Gao, W. Flexible electronics and devices as human—machine interfaces for medical robotics. Adv. Mater. 2022, 34, 2107902.

    CAS  Google Scholar 

  8. Han, S. T.; Peng, H. Y.; Sun, Q. J.; Venkatesh, S.; Chung, K. S.; Lau, S. C.; Zhou, Y.; Roy, V. A. L. An overview of the development of flexible sensors. Adv. Mater. 2017, 29, 1700375.

    Google Scholar 

  9. Chun, K. Y.; Seo, S.; Han, C. S. A wearable all-gel multimodal cutaneous sensor enabling simultaneous single-site monitoring of cardiac-related biophysical signals. Adv. Mater. 2022, 34, 2110082.

    CAS  Google Scholar 

  10. Gao, J. W.; Fan, Y. B.; Zhang, Q. T.; Luo, L.; Hu, X. Q.; Li, Y.; Song, J. C.; Jiang, H. J.; Gao, X. Y.; Zheng, L. et al. Ultra-robust and extensible fibrous mechanical sensors for wearable smart healthcare. Adv. Mater. 2022, 34, 2107511.

    CAS  Google Scholar 

  11. Song, J. C.; Wei, Y.; Xu, M. Z.; Gao, J. W.; Luo, L.; Wu, H.; Li, X. J.; Li, Y.; Wang, X. W. Highly sensitive flexible temperature sensor made using PEDOT: PSS/PANI. ACS Appl. Polym. Mater. 2022, 4, 766–772.

    CAS  Google Scholar 

  12. Pan, L.; Cai, P. Q.; Mei, L.; Cheng, Y.; Zeng, Y.; Wang, M.; Wang, T.; Jiang, Y.; Ji, B. H.; Li, D. C. et al. A compliant ionic adhesive electrode with ultralow bioelectronic impedance. Adv. Mater. 2020, 32, 2003723.

    CAS  Google Scholar 

  13. Lee, Y.; Liu, Y. X.; Seo, D. G.; Oh, J. Y.; Kim, Y.; Li, J. X.; Kang, J.; Kim, J.; Mun, J.; Foudeh, A. M. et al. A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nat. Biomed. Eng., in press, https://doi.org/10.1038/s41551-022-00918-x.

  14. Wen, N.; Zhang, L.; Jiang, D. W.; Wu, Z. J.; Li, B.; Sun, C. Y.; Guo, Z. H. Emerging flexible sensors based on nanomaterials: Recent status and applications. J. Mater. Chem. A 2020, 8, 25499–25527.

    CAS  Google Scholar 

  15. Jian, M. Q.; Wang, C. Y.; Wang, Q.; Wang, H. M.; Xia, K.; Yin, Z.; Zhang, M. C.; Liang, X. P.; Zhang, Y. Y. Advanced carbon materials for flexible and wearable sensors. Sci. China Mater. 2017, 60, 1026–1062.

    CAS  Google Scholar 

  16. Park, J.; Hwang, J. C.; Kim, G. G.; Park, J. U. Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials. InfoMat 2020, 2, 33–56.

    CAS  Google Scholar 

  17. Feng, W.; Zheng, W.; Gao, F.; Chen, X. S.; Liu, G. B.; Hasan, T.; Cao, W. W.; Hu, P. A. Sensitive electronic-skin strain sensor array based on the patterned two-dimensional α-In2Se3. Chem. Mater. 2016, 28, 4278–4283.

    CAS  Google Scholar 

  18. Zhang, R. F.; Jiang, J.; Wu, W. Z. Scalably nanomanufactured atomically thin materials-based wearable health sensors. Small Struct. 2022, 3, 2100120.

    CAS  Google Scholar 

  19. Yang, T. T.; Jiang, X.; Huang, Y. H.; Tian, Q.; Zhang, L.; Dai, Z. H.; Zhu, H. W. Mechanical sensors based on two-dimensional materials: Sensing mechanisms, structural designs and wearable applications. iScience 2022, 25, 103728.

    Google Scholar 

  20. Jiang, H. J.; Zheng, L.; Liu, Z.; Wang, X. W. Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2020, 2, 1077–1094.

    CAS  Google Scholar 

  21. Zhu, M. J.; Du, X. H.; Liu, S.; Li, J. H.; Wang, Z. Q.; Ono, T. A review of strain sensors based on two-dimensional molybdenum disulfide. J. Mater. Chem. C 2021, 9, 9083–9101.

    CAS  Google Scholar 

  22. Zheng, L.; Wang, X. W.; Jiang, H. J.; Xu, M. Z.; Huang, W.; Liu, Z. Recent progress of flexible electronics by 2D transition metal dichalcogenides. Nano Res. 2022, 15, 2413–2432.

    Google Scholar 

  23. Wang, L. D.; Xu, D.; Jiang, L. F.; Gao, J.; Tang, Z. M.; Xu, Y. J.; Chen, X.; Zhang, H. Transition metal dichalcogenides for sensing and oncotherapy: Status, challenges, and perspective. Adv. Funct. Mater. 2021, 31, 2004408.

    CAS  Google Scholar 

  24. Chen, X. Y.; Liu, C. B.; Mao, S. Environmental analysis with 2D transition-metal dichalcogenide-based field-effect transistors. Nano-Micro Lett. 2020, 12, 95.

    Google Scholar 

  25. Ping, J. F.; Fan, Z. X.; Sindoro, M.; Ying, Y. B.; Zhang, H. Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Adv. Funct. Mater. 2017, 27, 1605817.

    Google Scholar 

  26. Tian, B.; Tian, B. N.; Smith, B.; Scott, M. C.; Lei, Q.; Hua, R. N.; Tian, Y.; Liu, Y. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proc. Natl. Acad. Sci. USA 2018, 115, 4345–4350.

    CAS  Google Scholar 

  27. Sun, D.; Schaak, R. E. Solution-mediated growth of two-dimensional SnSe@GeSe nanosheet heterostructures. Chem. Mater. 2017, 29, 817–822.

    CAS  Google Scholar 

  28. Kim, Y.; Cruz, S. S.; Lee, K.; Alawode, B. O.; Choi, C.; Song, Y.; Johnson, J. M.; Heidelberger, C.; Kong, W.; Choi, S. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 2017, 544, 340–343.

    CAS  Google Scholar 

  29. Xu, M. Z.; Tang, B. J.; Lu, Y. H.; Zhu, C.; Lu, Q. B.; Zhu, C.; Zheng, L.; Zhang, J. Y.; Han, N. N.; Fang, W. D. et al. Machine learning driven synthesis of few-layered WTe2 with geometrical control. J. Am. Chem. Soc. 2021, 143, 18103–18113.

    CAS  Google Scholar 

  30. Liu, L. X.; Chen, W.; Zhang, H. B.; Wang, Q. W.; Guan, F. L.; Yu, Z. Z. Flexible and multifunctional silk textiles with biomimetic leaflike MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197.

    CAS  Google Scholar 

  31. Yun, T.; Jin, H. M.; Kim, D. H.; Han, K. H.; Yang, G. G.; Lee, G. Y.; Lee, G. S.; Choi, J. Y.; Kim, I. D.; Kim, S. O. 2D metal chalcogenide nanopatterns by block copolymer lithography. Adv. Funct. Mater. 2018, 28, 1804508.

    Google Scholar 

  32. Park, S.; Lee, A.; Choi, K. H.; Hyeong, S. K.; Bae, S.; Hong, J. M.; Kim, T. W.; Hong, B. H.; Lee, S. K. Layer-selective synthesis of MoS2 and WS2 structures under ambient conditions for customized electronics. ACS Nano 2020, 14, 8485–8494.

    CAS  Google Scholar 

  33. Xu, M. Z.; Gao, J. W.; Song, J. C.; Wang, H. X.; Zheng, L.; Wei, Y.; He, Y. M.; Wang, X. W.; Huang, W. Programmable patterned MoS2 film by direct laser writing for health-related signals monitoring. iScience 2021, 24, 103313.

    CAS  Google Scholar 

  34. Liang, Z. Q.; Pei, Y.; Chen, C. J.; Jiang, B.; Yao, Y. G.; Xie, H.; Jiao, M. L.; Chen, G. G.; Li, T. Y.; Yang, B. et al. General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment. ACS Nano 2019, 13, 12653–12661.

    CAS  Google Scholar 

  35. Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

    CAS  Google Scholar 

  36. Xue, G. F.; Bai, T.; Wang, W. G.; Wang, S. J.; Ye, M. D. Recent advances in various applications of nickel cobalt sulfide-based materials. J. Mater. Chem. A 2022, 10, 8087–8106.

    CAS  Google Scholar 

  37. Suri, G.; Tyagi, M.; Seshadri, G.; Verma, G. L.; Khandal, R. K. Novel nanocomposite optical plastics: Dispersion of titanium in polyacrylates. J. Nanotechnol. 2010, 2010, 531284.

    Google Scholar 

  38. Tugut, F.; Turgut, M.; Saraydın, D. Influence of concentrations of methacrylate and acrylate monomers on the properties of fiber reinforced polymethyl methacrylate denture base materials. Acta Chem. Iasi 2018, 26, 329–350.

    CAS  Google Scholar 

  39. Yin, J.; Li, Y. X.; Lv, F.; Lu, M.; Sun, K.; Wang, W.; Wang, L.; Cheng, F. Y.; Li, Y. F.; Xi, P. X. et al. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv. Mater. 2017, 29, 1704681.

    Google Scholar 

  40. Zhang, H. C.; Li, Y. J.; Zhang, G. X.; Xu, T. H.; Wan, P. B.; Sun, X. M. A metallic CoS2 nanopyramid array grown on 3D carbon fiber paper as an excellent electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2015, 3, 6306–6310.

    CAS  Google Scholar 

  41. Xing, J. C.; Zhu, Y. L.; Zhou, Q. W.; Zheng, X. D.; Jiao, Q. J. Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors. Electrochim. Acta 2014, 136, 550–556.

    CAS  Google Scholar 

  42. Wang, Z.; Liu, C.; Shi, G. F.; Ma, H.; Jiang, X.; Zhang, Q.; Zhang, H. Q.; Su, Y.; Yu, J. L.; Jia, S. M. Preparation and electrochemical properties of CoS2/carbon nanofiber composites. Ionics 2019, 25, 5035–5043.

    CAS  Google Scholar 

  43. Higgins, D. C.; Hassan, F. M.; Seo, M. H.; Choi, J. Y.; Hoque, M. A.; Lee, D. U.; Chen, Z. Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte. J. Mater. Chem. A 2015, 3, 6340–6350.

    CAS  Google Scholar 

  44. Zhu, H.; Wang, H. B.; Zhu, R. H.; Zhou, L.; Cao, B. M.; Yu, Z. R.; Zeng, D. J.; Zhang, C. J.; Zhang, L.; Ma, D. Y. Ultra-thin CoS2 nanosheets synthesized by one-step hydrothermal process for hydrogen evolution. J. Mater. Sci.: Mater. Electron. 2021, 32, 9149–9157.

    CAS  Google Scholar 

  45. Tzou, A. J.; Chu, K. H.; Lin, I. F.; Østreng, E.; Fang, Y. S.; Wu, X. P.; Wu, B. W.; Shen, C. H.; Shieh, J. M.; Yeh, W. K.; Chang, C. Y. et al. AlN surface passivation of GaN-based high electron mobility transistors by plasma-enhanced atomic layer deposition. Nanoscale Res. Lett. 2017, 12, 315.

    Google Scholar 

  46. Loubat, A.; Béchu, S.; Bouttemy, M.; Vigneron, J.; Lincot, D.; Guillemoles, J. F.; Etcheberry, A. Cu depletion on Cu(In, Ga)Se2 surfaces investigated by chemical engineering: An X-ray photoelectron spectroscopy approach. J. Vac. Sci. Technol. A 2019, 37, 041201.

    Google Scholar 

  47. Lu, Y. Y.; Yang, G.; Shen, Y. J.; Yang, H. Y.; Xu, K. C. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 2022, 14, 150.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51972064).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianfeng Shen or Mingxin Ye.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Zhong, H., Chen, B. et al. Liquid metal-assisted hydrothermal preparation of cobalt disulfide on the polymer tape surface for flexible sensor. Nano Res. 16, 7575–7582 (2023). https://doi.org/10.1007/s12274-022-5357-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5357-1

Keywords

Navigation