Skip to main content
Log in

Single atom Pd1/ZIF-8 catalyst via partial ligand exchange

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A partial ligand exchange strategy for fabricating catalytically active single palladium site immobilized on zeolitic imidazolate framework-8 (ZIF-8, Pd1/ZIF-8) is proposed in this work. The one-step synthesis simply involves reacting Na2PdCl4 with ZIF-8 in solvent. The Cl ligands of Na2PdCl4 exchanged with 2-methylimidazole (2-MeIm) of the framework, resulting in the anchoring Pd on the framework and dissociation of Zn into the solution. The whole synthesis is performed at ambient conditions and the crystalline integrity of ZIF-8 is well retained. The resulting Pd1/ZIF-8 is extensively characterized by different techniques which confirm the proposed mechanism. Pd1/ZIF-8 is also successfully applied in the size-selective semi-hydrogenation of alkynes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patterson, W. R.; Rooney, J. J. Single atom sites and hydrocarbon reaction mechanisms. Catal. Today 1992, 12, 113–129.

    CAS  Google Scholar 

  2. Abbet, S.; Sanchez, A.; Heiz, U.; Schneider, W. D.; Ferrari, A. M.; Pacchioni, G.; Rösch, N. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 ≤ n ≤ 30): One atom is enough! J. Am. Chem. Soc. 2000, 122, 3453–3457.

    CAS  Google Scholar 

  3. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    CAS  Google Scholar 

  4. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    CAS  Google Scholar 

  5. Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

    CAS  Google Scholar 

  6. Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.

    CAS  Google Scholar 

  7. Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

    CAS  Google Scholar 

  8. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    CAS  Google Scholar 

  9. Yang, M.; Allard, L. F.; Flytzani-Stephanopoulos, M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. J. Am. Chem. Soc. 2013, 135, 3768–3771.

    CAS  Google Scholar 

  10. Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

    CAS  Google Scholar 

  11. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    CAS  Google Scholar 

  12. DeRita, L.; Dai, S.; Lopez-Zepeda, K.; Pham, N.; Graham, G. W.; Pan, X. Q.; Christopher, P. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 2017, 139, 14150–14165.

    CAS  Google Scholar 

  13. Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    CAS  Google Scholar 

  14. Kistler, J. D.; Chotigkrai, N.; Xu, P. H.; Enderle, B.; Praserthdam, P.; Chen, C. Y.; Browning, N. D.; Gates, B. C. A single-site platinum CO oxidation catalyst in zeolite KLTL: Microscopic and spectroscopic determination of the locations of the platinum atoms. Angew. Chem., Int. Ed. 2014, 53, 8904–8907.

    CAS  Google Scholar 

  15. Ida, S.; Kim, N.; Ertekin, E.; Takenaka, S.; Ishihara, T. Photocatalytic reaction centers in two-dimensional titanium oxide crystals. J. Am. Chem. Soc. 2015, 137, 239–244.

    CAS  Google Scholar 

  16. Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

    CAS  Google Scholar 

  17. Fonseca, J.; Lu, J. L. Single-atom catalysts designed and prepared by the atomic layer deposition technique. ACS Catal. 2021, 11, 7018–7059.

    CAS  Google Scholar 

  18. Zhang, L. H.; Han, L. L.; Liu, H. X.; Liu, X. J.; Luo, J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem., Int. Ed. 2017, 56, 13694–13698.

    CAS  Google Scholar 

  19. Deng, D. H; Chen, X. Q.; Yu, L.; Wu, X.; Liu, Q. F.; Liu, Y.; Yang, H. X.; Tian, H. F.; Hu, Y. F.; Du, P. P. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462.

    Google Scholar 

  20. Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

    CAS  Google Scholar 

  21. Wei, H. H.; Huang, K.; Wang, D.; Zhang, R. Y.; Ge, B. H.; Ma, J. Y.; Wen, B.; Zhang, S.; Li, Q. Y.; Lei, M. et al. Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 2017, 8, 1490.

    Google Scholar 

  22. Fei, H. L.; Dong, J. C.; Wan, C. Z.; Zhao, Z. P.; Xu, X.; Lin, Z. Y.; Wang, Y. L.; Liu, H. T.; Zang, K. T.; Luo, J. et al. Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv. Mater. 2018, 30, 1802146.

    Google Scholar 

  23. Shen, Q. K.; Li, P. P.; Chen, W. M.; Jin, H. Q.; Yu, J.; Zhu, L.; Yang, Z. C.; Zhao, R. Q.; Zheng, L. R.; Song, W. G. et al. Ionic-liquid-assisted synthesis of metal single-atom catalysts for benzene oxidation to phenol. Sci. China Mater. 2022, 65, 163–169.

    CAS  Google Scholar 

  24. Wu, T.; Li, S.; Liu, S. J.; Cheong, W. C.; Peng, C.; Yao, K.; Li, Y. P.; Wang, J. Y.; Jiang, B. B.; Chen, Z. et al. Biomass-assisted approach for large-scale construction of multi-functional isolated single-atom site catalysts. Nano Res. 2022, 15, 3980–3990.

    CAS  Google Scholar 

  25. Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

    CAS  Google Scholar 

  26. Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487.

    CAS  Google Scholar 

  27. Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.

    Google Scholar 

  28. Vorobyeva, E.; Chen, Z.; Mitchell, S.; Leary, R. K.; Midgley, P.; Thomas, J. M.; Hauert, R.; Fako, E.; López, N.; Pérez-Ramírez, J. Tailoring the framework composition of carbon nitride to improve the catalytic efficiency of the stabilised palladium atoms. J. Mater. Chem. A 2017, 5, 16393–16403.

    CAS  Google Scholar 

  29. Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

    CAS  Google Scholar 

  30. Abdel-Mageed, A. M.; Rungtaweevoranit, B.; Parlinska-Wojtan, M.; Pei, X. K.; Yaghi, O. M.; Behm, R. J. Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 5201–5210.

    CAS  Google Scholar 

  31. Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 2020, 120, 12089–12174.

    CAS  Google Scholar 

  32. Huang, H. G.; Shen, K.; Chen, F. F.; Li, Y. W. Metal-organic frameworks as a good platform for the fabrication of single-atom catalysts. ACS Catal. 2020, 10, 6579–6586.

    CAS  Google Scholar 

  33. Li, J. J.; Xia, W.; Tang, J.; Gao, Y.; Jiang, C.; Jia, Y. N.; Chen, T.; Hou, Z. F.; Qi, R. J.; Jiang, D. et al. Metal-organic framework-derived graphene mesh: A robust scaffold for highly exposed Fe−N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 2022, 144, 9280–9291.

    CAS  Google Scholar 

  34. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Google Scholar 

  35. Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

    CAS  Google Scholar 

  36. Zhao, W. S.; Li, G. D.; Tang, Z. Y. Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts. Nano Today 2019, 27, 178–197.

    CAS  Google Scholar 

  37. Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

    Google Scholar 

  38. Tao, L.; Lin, C. Y.; Dou, S.; Feng, S.; Chen, D. W.; Liu, D. D.; Huo, J.; Xia, Z. H.; Wang, S. Y. Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers. Nano Energy 2017, 41, 417–425.

    CAS  Google Scholar 

  39. Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem., Int. Ed. 2006, 45, 1557–1559.

    CAS  Google Scholar 

  40. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    CAS  Google Scholar 

  41. López-Cabrelles, J.; Romero, J.; Abellán, G.; Giménez-Marqués, M.; Palomino, M.; Valencia, S.; Rey, F.; Mínguez Espallargas, G. Solvent-free synthesis of ZIFs: A route toward the elusive Fe(II) analogue of ZIF-8. J. Am. Chem. Soc. 2019, 141, 7173–7180.

    Google Scholar 

  42. Schejn, A.; Aboulaich, A.; Balan, L.; Falk, V.; Lalevée, J.; Medjahdi, G.; Aranda, L.; Mozet, K.; Schneider, R. Cu2+-doped zeolitic imidazolate frameworks (ZIF-8): Efficient and stable catalysts for cycloadditions and condensation reactions. Catal. Sci. Technol. 2015, 5, 1829–1839.

    CAS  Google Scholar 

  43. Chen, C. L.; Alalouni, M. R.; Dong, X. L.; Cao, Z.; Cheng, Q. P.; Zheng, L. R.; Meng, L. K.; Guan, C.; Liu, L. M.; Abou-Hamad, E. et al. Highly active heterogeneous catalyst for ethylene dimerization prepared by selectively doping Ni on the surface of a zeolitic imidazolate framework. J. Am. Chem. Soc. 2021, 143, 7144–7153.

    CAS  Google Scholar 

  44. Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.

    CAS  Google Scholar 

  45. Han, J. X.; Meng, X. Y.; Lu, L.; Bian, J. J.; Li, Z. P.; Sun, C. W. Single-atom Fe−Nx−C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 2019, 29, 1808872.

    CAS  Google Scholar 

  46. Jiao, L.; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.

    CAS  Google Scholar 

  47. Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A singleatom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

    CAS  Google Scholar 

  48. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    CAS  Google Scholar 

  49. Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541.

    CAS  Google Scholar 

  50. Sayers, D. E.; Stern, E. A.; Lytle, F. W. New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray-absorption fine structure. Phys. Rev. Lett. 1971, 27, 1204–1207.

    CAS  Google Scholar 

  51. Szeto, K. C.; Jones, Z. R.; Merle, N.; Rios, C.; Gallo, A.; Le Quemener, F.; Delevoye, L.; Gauvin, R. M.; Scott, S. L.; Taoufik, M. A strong support effect in selective propane dehydrogenation catalyzed by Ga(i-Bu)3 grafted onto γ-alumina and silica. ACS Catal. 2018, 8, 7566–7577.

    CAS  Google Scholar 

  52. Muñoz, M.; Argoul, P.; Farges, F. Continuous cauchy wavelet transform analyses of EXAFS spectra: A qualitative approach. Am. Mineral. 2003, 88, 694–700.

    Google Scholar 

  53. Liu, M.; Arora, S. K. Structure of aquabis(2,2′-bipyridyl)zinc(II) diperchlorate. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1993, 49, 372–374.

    Google Scholar 

  54. Chen, X. M.; Huang, X. C.; Xu, Z. T.; Huang, X. Y. Tetrakis(1-methylimidazole-N3)zinc(II) diperchlorate. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1996, 52, 2482–2484.

    Google Scholar 

  55. Irving, H. M. N. H.; Iwantscheff, G. The analytical applications of dithizone. Crit. Rev. Anal. Chem. 1980, 8, 321–366.

    CAS  Google Scholar 

  56. Venna, S. R.; Jasinski, J. B.; Carreon, M. A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2010, 132, 18030–18033.

    CAS  Google Scholar 

  57. Zhao, Y. N.; Liang, W. W.; Li, Y. D.; Lefferts, L. Effect of chlorine on performance of Pd catalysts prepared via colloidal immobilization. Catal. Today 2017, 297, 308–315.

    CAS  Google Scholar 

  58. Senō, M.; Tsuchiya, S. X-ray photoelectron spectra of palladium-ylide complexes. Bond character in dichlorobis(1,1-dimethyl-1-p-nitrobenzylamine-2-acetimide-N)palladium(II). J. Electron Spectrosc. Relat. Phenom. 1976, 8, 165–168.

    Google Scholar 

  59. Sadakiyo, M.; Kon-no, M.; Sato, K.; Nagaoka, K.; Kasai, H.; Kato, K.; Yamauchi, M. Synthesis and catalytic application of PVP-coated Ru nanoparticles embedded in a porous metal-organic framework. Dalton Trans. 2014, 43, 11295–11298.

    CAS  Google Scholar 

  60. Rodríguez, L.; Romero, D.; Rodríguez, D.; Sánchez, J.; Domínguez, F.; Arteaga, G. Dehydrogenation of n-butane over Pd-Ga/Al2O3 catalysts. Appl. Catal. A: Gen. 2010, 373, 66–70.

    Google Scholar 

  61. Newville, M. Fundamentals of XAFS. Rev. Mineral. Geochem. 2014, 78, 33–74.

    CAS  Google Scholar 

  62. Zhang, T. J.; Chen, Z. Y.; Walsh, A. G.; Li, Y.; Zhang, P. Single-atom catalysts supported by crystalline porous materials: Views from the inside. Adv. Mater. 2020, 32, 2002910.

    CAS  Google Scholar 

  63. Yuan, N.; Pascanu, V.; Huang, Z. H.; Valiente, A.; Heidenreich, N.; Leubner, S.; Inge, A. K.; Gaar, J.; Stock, N.; Persson, I. et al. Probing the evolution of palladium species in Pd@MOF catalysts during the heck coupling reaction: An operando X-ray absorption spectroscopy study. J. Am. Chem. Soc. 2018, 140, 8206–8217.

    CAS  Google Scholar 

  64. Lopes, C. W.; Cerrillo, J. L.; Palomares, A. E.; Rey, F.; Agostini, G. An in situ XAS study of the activation of precursor-dependent Pd nanoparticles. Phys. Chem. Chem. Phys. 2018, 20, 12700–12709.

    CAS  Google Scholar 

  65. Funke, H.; Scheinost, A. C.; Chukalina, M. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.

    Google Scholar 

  66. Ly, N. H.; Joo, S. W. Zn(II)-concentration dependent Raman spectra in the dithizone complex on gold nanoparticle surfaces in environmental water samples. Appl. Surf. Sci. 2015, 356, 1005–1011.

    CAS  Google Scholar 

  67. Kim, M.; Cahill, J. F.; Fei, H. H.; Prather, K. A.; Cohen, S. M. Postsynthetic ligand and cation exchange in robust metal-organic frameworks. J. Am. Chem. Soc. 2012, 134, 18082–18088.

    CAS  Google Scholar 

  68. Fei, H. H.; Cahill, J. F.; Prather, K. A.; Cohen, S. M. Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks. Inorg. Chem. 2013, 52, 4011–4016.

    CAS  Google Scholar 

  69. Karagiaridi, O.; Lalonde, M. B.; Bury, W.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T. Opening ZIF-8: A catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J. Am. Chem. Soc. 2012, 134, 18790–18796.

    CAS  Google Scholar 

  70. Comito, R. J.; Fritzsching, K. J.; Sundell, B. J.; Schmidt-Rohr, K.; Dincă, M. Single-site heterogeneous catalysts for olefin polymerization enabled by cation exchange in a metal-organic framework. J. Am. Chem. Soc. 2016, 138, 10232–10237.

    CAS  Google Scholar 

  71. Yu, D. B.; Shao, Q.; Song, Q. J.; Cui, J. W.; Zhang, Y. L.; Wu, B.; Ge, L.; Wang, Y.; Zhang, Y.; Qin, Y. Q. et al. A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures. Nat. Commun. 2020, 11, 927.

    CAS  Google Scholar 

  72. He, T.; Kong, X. J.; Zhou, J.; Zhao, C.; Wang, K. C.; Wu, X. Q.; Lv, X. L.; Si, G. R.; Li, J. R.; Nie, Z. R. A practice of reticular chemistry: Construction of a robust mesoporous palladium metal-organic framework via metal metathesis. J. Am. Chem. Soc. 2021, 143, 9901–9911.

    CAS  Google Scholar 

  73. Maekawa, M.; Munakata, M.; Kitagawa, S.; Nakamura, M. Crystal structure of (2,2′-bipyridine)dichloropalladium(II). Anal. Sci. 1991, 7, 521–522.

    CAS  Google Scholar 

  74. Navarro-Ranninger, M. C.; Martínez-Carrera, S.; García-Blanco, S. Structure of trans-dichlorobis(1-methylimidazole)palladium(II), [Pd(C4H6N2)2Cl2]. Acta Crystallogr. C Struct. Chem. 1983, 39, 186–188.

    Google Scholar 

  75. Allred, A. L. Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 1961, 17, 215–221.

    CAS  Google Scholar 

  76. Xu, W.; Chen, H.; Jie, K. C.; Yang, Z. Z.; Li, T. T.; Dai, S. Entropy- driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem. 2019, 131, 5072–5076.

    Google Scholar 

  77. Ji, S. F.; Chen, Y. J.; Zhao, S.; Chen, W. X.; Shi, L. J.; Wang, Y.; Dong, J. C.; Li, Z.; Li, F. W.; Chen, C. et al. Atomically dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem., Int. Ed. 2019, 58, 4271–4275.

    CAS  Google Scholar 

  78. Guan, Q. Q.; Yang, C. H.; Wang, S. W.; He, L.; Kong, Z. N.; Chai, X. S.; Xin, H. L.; Ning, P. Reactive metal-biopolymer interactions for semihydrogenation of acetylene. ACS Catal. 2019, 9, 11146–11152.

    CAS  Google Scholar 

  79. Fu, B. A.; McCue, A. J.; Liu, Y. N.; Weng, S. X.; Song, Y. F.; He, Y. F.; Feng, J. T.; Li, D. Q. Highly selective and stable isolated non-noble metal atom catalysts for selective hydrogenation of acetylene. ACS Catal. 2022, 12, 607–615.

    CAS  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the National Natural Science Foundation of China (Nos. 21972080, 21503123, 91961201, and 21871167) and Shanxi “1331 Project” for financial support. We thank Prof. Jian Zhang, Prof. Fu-Qiang Zhang, and Wen-Juan Tian for their valuable advice. We are also grateful for the help from the scientific instrument center of Shanxi University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huan Li or Xian-Ming Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, F., Han, X. et al. Single atom Pd1/ZIF-8 catalyst via partial ligand exchange. Nano Res. 16, 8003–8011 (2023). https://doi.org/10.1007/s12274-022-5351-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5351-7

Keywords

Navigation