Skip to main content
Log in

Atomic scale visualizations of low-angle grain boundary mediated plasticity by coupled dislocation climb and glide in nanoporous gold

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Grain boundaries (GBs), as a prevalent structural characteristic, play a crucial role in the deformation of nanoporous metals with nanosized grains and ligaments. However, the fundamental understanding of GB-mediated deformation is still lacking because the plastic behavior of discrete ligaments involving GBs remains to be unknown. Here, we report atomic scale visualizations of coupled GB dislocation climb and glide in nanoporous gold ligaments with low-angle GBs via in situ tensile straining inside a Cs-corrected transmission electron microscope. The zig-zag motion paths of GB dislocations are precisely determined by real-time tracking of the movements of dislocation cores. The concurrent climb and glide of the dislocation arrays are confined to a narrow GB region, greatly enhancing GB diffusion in the bicrystal ligament. Our findings of coupled dislocation climb and glide shine a light on the room-temperature deformation of nanoporous metals and provide a time-dependent atomic-level physical image for GB engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, J.; Yin, H. M.; Li, X. B.; Okunishi, E.; Shen, Y. L.; He, J.; Tang, Z. K.; Wang, W. X.; Yücelen, E.; Li, C. et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction. Nat. Energy 2017, 2, 17111.

    Article  CAS  Google Scholar 

  2. Fujita, T.; Guan, P. F.; McKenna, K.; Lang, X. Y.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N. et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11, 775–780.

    Article  CAS  Google Scholar 

  3. Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Bäumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010, 327, 319–322.

    Article  CAS  Google Scholar 

  4. Chen, Q.; Ding, Y.; Chen, M. W. Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bull. 2018, 43, 43–48.

    Article  Google Scholar 

  5. Şeker, E.; Shih, W. C.; Stine, K. J. Nanoporous metals by alloy corrosion: Bioanalytical and biomedical applications. MRS Bull. 2018, 43, 49–56.

    Article  Google Scholar 

  6. Biener, J.; Hodge, A. M.; Hayes, J. R.; Volkert, C. A.; Zepeda-Ruiz, L. A.; Hamza, A. V.; Abraham, F. F. Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 2006, 6, 2379–2382.

    Article  CAS  Google Scholar 

  7. Shi, S.; Li, Y.; Ngo-Dinh, B. N.; Markmann, J.; Weissmüller, J. Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science 2021, 371, 1026–1033.

    Article  CAS  Google Scholar 

  8. Liu, L. Z.; Zhang, Y. Y.; Xie, H.; Jin, H. J. Transition from homogeneous to localized deformation in nanoporous gold. Phys. Rev. Lett. 2021, 127, 095501.

    Article  CAS  Google Scholar 

  9. Jin, H. J.; Weissmüller, J.; Farkas, D. Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts. MRS Bull. 2018, 43, 35–42.

    Article  Google Scholar 

  10. Zhang, Y. Y.; Xie, H.; Liu, L. Z.; Jin, H. J. Surface triple junctions govern the strength of a nanoscale solid. Phys. Rev. Lett. 2021, 126, 235501.

    Article  CAS  Google Scholar 

  11. Biener, J.; Hodge, A. M.; Hamza, A. V. Microscopic failure behavior of nanoporous gold. Appl. Phys. Lett. 2005, 87, 121908.

    Article  Google Scholar 

  12. Liu, P.; Wei, X.; Song, S. X.; Wang, L. H.; Hirata, A.; Fujita, T.; Han, X. D.; Zhang, Z.; Chen, M. W. Time-resolved atomic-scale observations of deformation and fracture of nanoporous gold under tension. Acta Mater. 2019, 165, 99–108.

    Article  CAS  Google Scholar 

  13. Sun, X. Y.; Xu, G. K.; Li, X. Y.; Feng, X. Q.; Gao, H. J. Mechanical properties and scaling laws of nanoporous gold. J. Appl. Phys. 2013, 113, 023505.

    Article  Google Scholar 

  14. Gwak, E. J.; Kim, J. Y. Weakened flexural strength of nanocrystalline nanoporous gold by grain refinement. Nano Lett. 2016, 16, 2497–2502.

    Article  CAS  Google Scholar 

  15. Song, E.; Jeon, H.; Gwak, E. J.; Kang, J. Y.; Kim, J. Y. Grain boundary-assisted resistance to crack propagation in nanoporous gold with fine grains. Scr. Mater. 2022, 215, 114708.

    Article  CAS  Google Scholar 

  16. Azizi, A.; Zou, X. L.; Ercius, P.; Zhang, Z. H.; Elías, A. L.; Perea-López, N.; Stone, G.; Terrones, M.; Yakobson, B. I.; Alem, N. Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 2014, 5, 4867.

    Article  CAS  Google Scholar 

  17. Zhang, J. F.; Li, Y. R.; Li, X. C.; Zhai, Y. D.; Zhang, Q.; Ma, D. F.; Mao, S. C.; Deng, Q. S.; Li, Z. P.; Li, X. Q. et al. Timely and atomic-resolved high-temperature mechanical investigation of ductile fracture and atomistic mechanisms of tungsten. Nat. Commun. 2021, 12, 2218.

    Article  CAS  Google Scholar 

  18. Sun, S. D.; Li, D. W.; Yang, C. P.; Fu, L. B.; Kong, D. L.; Lu, Y.; Guo, Y. Z.; Liu, D. M.; Guan, P. F.; Zhang, Z. et al. Direct atomic-scale observation of ultrasmall Ag nanowires that exhibit fcc, bcc, and hcp structures under bending. Phys. Rev. Lett. 2022, 128, 015701.

    Article  CAS  Google Scholar 

  19. Wang, L. H.; Zhang, Y.; Zeng, Z.; Zhou, H.; He, J.; Liu, P.; Chen, M. W.; Han, J.; Srolovitz, D. J.; Teng, J. et al. Tracking the sliding of grain boundaries at the atomic scale. Science 2022, 375, 1261–1265.

    Article  CAS  Google Scholar 

  20. Zhu, Q.; Huang, Q. S.; Guang, C.; An, X. H.; Mao, S. X.; Yang, W.; Zhang, Z.; Gao, H. J.; Zhou, H. F.; Wang, J. W. Metallic nanocrystals with low angle grain boundary for controllable plastic reversibility. Nat. Commun. 2020, 11, 3100.

    Article  CAS  Google Scholar 

  21. Zhu, Q.; Cao, G.; Wang, J. W.; Deng, C.; Li, J. X.; Zhang, Z.; Mao, S. X. In situ atomistic observation of disconnection-mediated grain boundary migration. Nat. Commun. 2019, 10, 156.

    Article  Google Scholar 

  22. Huang, Q. S.; Zhu, Q.; Chen, Y. B.; Gong, M. Y.; Li, J. X.; Zhang, Z.; Yang, W.; Wang, J.; Zhou, H. F.; Wang, J. W. Twinning-assisted dynamic adjustment of grain boundary mobility. Nat. Commun. 2021, 12, 6695.

    Article  CAS  Google Scholar 

  23. Wang, L. H.; Teng, J.; Liu, P.; Hirata, A.; Ma, E.; Zhang, Z.; Chen, M. W.; Han, X. D. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun. 2014, 5, 4402.

    Article  CAS  Google Scholar 

  24. Liu, P.; Mao, S. C.; Wang, L. H.; Han, X. D.; Zhang, Z. Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline, textured, columnar-structured thin gold films. Scr. Mater. 2011, 64, 343–346.

    Article  CAS  Google Scholar 

  25. Huang, M. S.; Li, Z. H.; Tong, J. The influence of dislocation climb on the mechanical behavior of polycrystals and grain size effect at elevated temperature. Int. J. Plast. 2014, 61, 112–127.

    Article  CAS  Google Scholar 

  26. Ayas, C.; Deshpande, V. S.; Geers, M. G. D. Tensile response of passivated films with climb-assisted dislocation glide. J. Mech. Phys. Solids 2012, 60, 1626–1643.

    Article  Google Scholar 

  27. Bakó, B.; Clouet, E.; Dupuy, L. M.; Blétry, M. Dislocation dynamics simulations with climb: Kinetics of dislocation loop coarsening controlled by bulk diffusion. Philos. Mag. 2011, 91, 3173–3191.

    Article  Google Scholar 

  28. Keralavarma, S. M.; Benzerga, A. A. High-temperature discrete dislocation plasticity. J. Mech. Phys. Solids 2015, 82, 1–22.

    Article  Google Scholar 

  29. Geers, M. G. D.; Cottura, M.; Appolaire, B.; Busso, E. P.; Forest, S.; Villani, A. Coupled glide-climb diffusion-enhanced crystal plasticity. J. Mech. Phys. Solids 2014, 70, 136–153.

    Article  Google Scholar 

  30. Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146.

    Article  Google Scholar 

  31. Hirth, J. P.; Lothe, J. Theory of Dislocations; John Wiley & Sons: Hoboken, 1982.

    Google Scholar 

  32. Wang, X.; Zheng, S. X.; Shinzato, S.; Fang, Z. W.; He, Y.; Zhong, L.; Wang, C. M.; Ogata, S.; Mao, S. X. Atomistic processes of surface-diffusion-induced abnormal softening in nanoscale metallic crystals. Nat. Commun. 2021, 12, 5237.

    Article  CAS  Google Scholar 

  33. Sun, S. D.; Kong, D. L.; Li, D. H.; Liao, X. Z.; Liu, D. M.; Mao, S. C.; Zhang, Z.; Wang, L. H.; Han, X. D. Atomistic mechanism of stress-induced combined slip and diffusion in sub-5 nanometer-sized Ag nanowires. ACS Nano 2019, 13, 8708–8716.

    Article  CAS  Google Scholar 

  34. Liu, P.; Wang, L. H.; Yue, Y. H.; Song, S. X.; Wang, X. D.; Reddy, K. M.; Liao, X. Z.; Zhang, Z.; Chen, M. W.; Han, X. D. Room-temperature superplasticity in Au nanowires and their atomistic mechanisms. Nanoscale 2019, 11, 8727–8735.

    Article  CAS  Google Scholar 

  35. Lu, Y.; Song, J.; Huang, J. Y.; Lou, J. Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires. Nano Res. 2011, 4, 1261–1267.

    Article  CAS  Google Scholar 

  36. Zheng, H.; Cao, A. J.; Weinberger, C. R.; Huang, J. Y.; Du, K.; Wang, J. B.; Ma, Y. Y.; Xia, Y. N.; Mao, S. X. Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 2010, 1, 144.

    Article  Google Scholar 

  37. Keralavarma, S. M.; Cagin, T.; Arsenlis, A.; Benzerga, A. A. Power-law creep from discrete dislocation dynamics. Phys. Rev. Lett. 2012, 109, 265504.

    Article  Google Scholar 

  38. Guo, Q. N.; Yue, X. D.; Yang, S. E.; Huo, Y. P. Tensile properties of ultrathin copper films and their temperature dependence. Comput. Mater. Sci. 2010, 50, 319–330.

    Article  CAS  Google Scholar 

  39. Wang, J.; Hoagland, R. G.; Misra, A. Room-temperature dislocation climb in metallic interfaces. Appl. Phys. Lett. 2009, 94, 131910.

    Article  Google Scholar 

  40. Wang, J.; Misra, A. An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opin. Solid State Mater. Sci. 2011, 15, 20–28.

    Article  CAS  Google Scholar 

  41. Chu, S. F.; Liu, P.; Zhang, Y.; Wang, X. D.; Song, S. X.; Zhu, T.; Zhang, Z.; Han, X. D.; Sun, B. D.; Chen, M. W. In situ atomic-scale observation of dislocation climb and grain boundary evolution in nanostructured metal. Nat. Commun. 2022, 13, 4151.

    Article  CAS  Google Scholar 

  42. Li, N.; Wang, J.; Huang, J. Y.; Misra, A.; Zhang, X. In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scr. Mater. 2010, 63, 363–366.

    Article  CAS  Google Scholar 

  43. Gu, Y. J.; Xiang, Y.; Srolovitz, D. J.; El-Awady, J. A. Self-healing of low angle grain boundaries by vacancy diffusion and dislocation climb. Scr. Mater. 2018, 155, 155–159.

    Article  CAS  Google Scholar 

  44. Gu, Y. J.; Xiang, Y.; Srolovitz, D. J. Relaxation of low-angle grain boundary structure by climb of the constituent dislocations. Scr. Mater. 2016, 114, 35–40.

    Article  CAS  Google Scholar 

  45. Ovid’ko, I. A.; Reizis, A. B. Grain-boundary dislocation climb and diffusion in nanocrystalline solids. Phys. Solid State 2001, 43, 35–38.

    Article  Google Scholar 

  46. Burton, B. Interface reaction controlled diffusional creep: A consideration of grain boundary dislocation climb sources. Mater. Sci. Eng. 1972, 10, 9–14.

    Article  CAS  Google Scholar 

  47. Han, X. D.; Liu, P.; Zhang, Y. F.; Yue, Y. H.; Zhang, Z. Device and method for measuring electromechanical properties and microstructure of nano-materials under stress state. U.S. Patent 8069733, December 17, 2011.

  48. Galindo, P. L.; Kret, S.; Sanchez, A. M.; Laval, J. Y.; Yáñez, A.; Pizarro, J.; Guerrero, E.; Ben, T.; Molina, S. I. The Peak Pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 2007, 107, 1186–1193.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P. L. was supported by the National Natural Science Foundation of China (Nos. 52173224, 52130105, and 51821001), Natural Science Foundation of Shanghai (No. 21ZR1431200), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Liu.

Electronic Supplementary Material

12274_2022_5306_MOESM1_ESM.pdf

Atomic scale visualizations of low-angle grain boundary mediated plasticity by coupled dislocation climb and glide in nanoporous gold

Supplementary material, approximately 16.3 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, S., Jiang, J., Zhao, X. et al. Atomic scale visualizations of low-angle grain boundary mediated plasticity by coupled dislocation climb and glide in nanoporous gold. Nano Res. 16, 2622–2629 (2023). https://doi.org/10.1007/s12274-022-5306-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5306-2

Keywords

Navigation