Skip to main content

Advertisement

Log in

A hydrogel system containing molybdenum-based nanomaterials for wound healing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Wound delayed healing or non-healing has seriously affected patients’ quality of life and has been a significant economic burden for public health systems worldwide. Excess reactive oxygen species (ROS) play important roles for impeding the process of wound healing. Herein, we report a hydrogel system containing low-valence-state molybdenum nanomaterials (Mo hydrogel) for wound healing by scavenging the detrimental ROS. Both in vitro and in vivo results demonstrate that the synthesized Mo hydrogel can accelerate wound healing, promote angiogenesis, and stimulate the expression of growth factors. Since the molybdenum is an essential element for the survival of all organisms, such novel Mo-hydrogel has the great potential to be clinically translated for wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landén, N. X.; Li, D. Q.; Ståhle, M. Transition from inflammation to proliferation: A critical step during wound healing. Cell. Mol. Life Sci. 2016, 73, 3861–3885.

    Article  Google Scholar 

  2. Malone, M.; Radzieta, M.; Schwarzer, S.; Jensen, S. O.; Lavery, L. A. Efficacy of a topical concentrated surfactant gel on microbial communities in non-healing diabetic foot ulcers with chronic biofilm infections: A proof-of-concept study. Int. Wound J. 2021, 18, 457–466.

    Article  Google Scholar 

  3. Eming, S. A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, 265sr6.

    Article  Google Scholar 

  4. Sanchez, M. C.; Lancel, S.; Boulanger, E.; Neviere, R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review. Antioxidants 2018, 7, 98.

    Article  Google Scholar 

  5. Dworzański, J.; Strycharz-Dudziak, M.; Kliszczewska, E.; Kiełczykowska, M.; Dworzańska, A.; Drop, B.; Polz-Dacewicz, M. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity in patients with diabetes mellitus type 2 infected with Epstein—Barr virus. PLoS One 2020, 15, e0230374.

    Article  Google Scholar 

  6. Obrosova, I. G. Update on the pathogenesis of diabetic neuropathy. Curr. Diab. Rep. 2003, 3, 439–445.

    Article  Google Scholar 

  7. Rosenberger, D. C.; Blechschmidt, V.; Timmerman, H.; Wolff, A.; Treede, R. D. Challenges of neuropathic pain: Focus on diabetic neuropathy. J. Neural Transm. 2020, 127, 589–624.

    Article  Google Scholar 

  8. Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

    Article  CAS  Google Scholar 

  9. Zhang, R. F.; Fan, K. L.; Yan, X. Y. Nanozymes: Created by learning from nature. Sci. China Life Sci. 2020, 63, 1183–1200.

    Article  Google Scholar 

  10. Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105.

    Article  CAS  Google Scholar 

  11. Xu, J. G.; Cai, R.; Zhang, Y. G.; Mu, X. Y. Molybdenum disulfide-based materials with enzyme-like characteristics for biological applications. Colloids Surf. B Biointerfaces 2021, 200, 111575.

    Article  CAS  Google Scholar 

  12. Huang, X. Y.; Hu, D. W.; Zhao, F. J. Molybdenum: More than an essential element. J. Exp. Bot. 2022, 73, 1766–1774.

    Article  CAS  Google Scholar 

  13. Thulabandu, V.; Chen, D. M.; Atit, R. P. Dermal fibroblast in cutaneous development and healing. Wiley Interdiscip. Rev. Dev. Biol. 2018, 7, e307.

    Article  Google Scholar 

  14. Niu, Y. M.; Li, Q.; Ding, Y.; Dong, L.; Wang, C. M. Engineered delivery strategies for enhanced control of growth factor activities in wound healing. Adv. Drug Deliv. Rev. 2019, 146, 190–208.

    Article  CAS  Google Scholar 

  15. Chen, Q. R.; Hou, H.; Wang, S. K.; Zhao, X.; Li, B. F. Effects of early enteral nutrition supplemented with collagen peptides on post-burn inflammatory responses in a mouse model. Food Funct. 2017, 8, 1933–1941.

    Article  CAS  Google Scholar 

  16. Begum, F.; Keni, R.; Ahuja, T. N.; Beegum, F.; Nandakumar, K.; Shenoy, R. R. Notch signaling: A possible therapeutic target and its role in diabetic foot ulcers. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102542.

    Article  CAS  Google Scholar 

  17. Kimball, A. S.; Joshi, A. D.; Boniakowski, A. E.; Schaller, M.; Chung, J.; Allen, R.; Bermick, J.; Carson, W. F. I.; Henke, P. K.; Maillard, I. et al. Notch regulates macrophage-mediated inflammation in diabetic wound healing. Front. Immunol. 2017, 8, 635.

    Article  Google Scholar 

  18. Jia, C. L.; Lu, Y. Z.; Bi, B.; Chen, L.; Yang, Q. J.; Yang, P.; Guo, Y.; Zhu, J. J.; Zhu, N. W.; Liu, T. Y. Platelet-rich plasma ameliorates senescence-like phenotypes in a cellular photoaging model. RSC Adv. 2017, 7, 3152–3160.

    Article  CAS  Google Scholar 

  19. Jiang, Y. H.; Zhao, W. T.; Xu, S. S.; Wei, J. J.; Lasaosa, F. L.; He, Y. Y.; Mao, H. L.; Bailo, R. M. B.; Kong, D. L.; Gu, Z. W. Bioinspired design of mannose-decorated globular lysine dendrimers promotes diabetic wound healing by orchestrating appropriate macrophage polarization. Biomaterials 2022, 280, 121323.

    Article  CAS  Google Scholar 

  20. Ma, T. F.; Zhai, X. Y.; Huang, Y. K.; Zhang, M. Z.; Zhao, X. L.; Du, Y. P.; Yan, C. H. A smart nanoplatform with photothermal antibacterial capability and antioxidant activity for chronic wound healing. Adv. Healthc. Mater. 2021, 10, 2100033.

    Article  CAS  Google Scholar 

  21. Lin, Y.; Liu, X. Y.; Liu, Z. X.; Xu, Y. H. Visible-light-driven photocatalysis-enhanced nanozyme of TiO2 nanotubes@MoS2 nanoflowers for efficient wound healing infected with multidrug-resistant bacteria. Small 2022, 17, 2201184.

    Article  Google Scholar 

  22. Huang, H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances. Sensors 2018, 18, 3249.

    Article  Google Scholar 

  23. Da Rocha-Azevedo, B.; Ho, C. H.; Grinnell, F. PDGF stimulated dispersal of cell clusters and disruption of fibronectin matrix on three-dimensional collagen matrices requires matrix metalloproteinase-2. Mol. Biol. Cell 2015, 26, 1098–1105.

    Article  CAS  Google Scholar 

  24. Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Kassymbek, K.; Jimi, S.; Saparov, A. Immunology of acute and chronic wound healing. Biomolecules 2021, 11, 700.

    Article  CAS  Google Scholar 

  25. Borena, B. M.; Martens, A.; Broeckx, S. Y.; Meyer, E.; Chiers, K.; Duchateau, L.; Spaas, J. H. Regenerative skin wound healing in mammals: State-of-the-art on growth factor and stem cell based treatments. Cell. Physiol. Biochem. 2015, 36, 1–23.

    Article  CAS  Google Scholar 

  26. Komi, D. E. A.; Khomtchouk, K.; Santa Maria, P. L. A review of the contribution of mast cells in wound healing: Involved molecular and cellular mechanisms. Clin. Rev. Allergy Immunol. 2020, 58, 298–312.

    Article  CAS  Google Scholar 

  27. Fukushima, T.; Uchiyama, S.; Tanaka, H.; Kataoka, H. Hepatocyte growth factor activator: A proteinase linking tissue injury with repair. Int. J. Mol. Sci. 2018, 19, 3435.

    Article  Google Scholar 

  28. Miyagi, H.; Thomasy, S. M.; Russell, P.; Murphy, C. J. The role of hepatocyte growth factor in corneal wound healing. Exp. Eye Res. 2018, 166, 49–55.

    Article  CAS  Google Scholar 

  29. Wang, X. J.; Banda, J.; Qi, H.; Chang, A. K.; Bwalya, C.; Chao, L.; Li, X. K. Scarless wound healing: Current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine Growth Factor Rev. 2022, 66, 26–37.

    Article  CAS  Google Scholar 

  30. He, M.; Han, T.; Wang, Y.; Wu, Y. H.; Qin, W. S.; Du, L. Z.; Zhao, C. Q. Effects of HGF and KGF gene silencing on vascular endothelial growth factor and its receptors in rat ultraviolet radiation-induced corneal neovascularization. Int. J. Mol. Med. 2019, 43, 1888–1899.

    CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the financial support from the National Natural Science Foundation of China (Nos. 82102190 and 81773347), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (No. 20191805), and the Foundation of National Facility for Translational Medicine (Shanghai) (No. TMSK-2021-122).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinxiao Guo, Dalong Ni or Nan Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Jia, C., Gong, C. et al. A hydrogel system containing molybdenum-based nanomaterials for wound healing. Nano Res. 16, 5368–5375 (2023). https://doi.org/10.1007/s12274-022-5255-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5255-9

Keywords

Navigation