Skip to main content
Log in

Engineering CeO2/CuO heterostructure anchored on upconversion nanoparticles with boosting ROS generation-primed apoptosis-ferroptosis for cancer dynamic therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Highly toxic reactive oxygen species (ROS) induced apoptosis and ferroptosis have been considered as significant cell death pathways for cancer therapy. However, insufficient amount of intracellular ROS extremely restricts the therapeutic effect. Toward this, we report a rationally designed nanocomposite (mUCC) with enhanced ROS generation ability, inducing the combination of apoptosis and ferroptosis through synergistic photodynamic therapy (PDT) and chemodynamic therapy (CDT). Under 808 nm near-infrared (NIR) light irradiation, photocatalytic reaction is triggered starting from the separation of electron-hole pairs on the surface of heterojunction (CeO2/CuO), realizing improved ROS production. Simultaneously, mUCC served as Fenton-like agent exhibits considerable ability to generate highly toxic ·OH under tumor microenvironment (TME). The boosted accumulation of ROS disrupts the redox balance within tumor cells and results in the integration of apoptosis and ferroptosis. In addition, mUCC shows satisfactory tumor targeting property benefiting from the cancer cell membrane functionalization under the guidance of magnetic resonance imaging (MRI) and NIR fluorescence imaging. The intelligent mUCC with good biocompatibility and excellent antitumor response achieves efficient tumor elimination under synergistic PDT and CDT. This work offers an elective approach for further development of ROS-based therapeutic nanoplatform in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, S. B.; Brown, E. A.; Walker, I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004, 5, 497–508.

    CAS  Google Scholar 

  2. Castano, A. P.; Mroz, P.; Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006, 6, 535–545.

    CAS  Google Scholar 

  3. Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. Ca Cancer J. Clin. 2011, 61, 250–281.

    Google Scholar 

  4. DeRosa, M. C.; Crutchley, R. J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002, 233–234, 351–371.

    Google Scholar 

  5. Choi, J.; Sun, I. C.; Hwang, H. S.; Yoon, H. Y.; Kim, K. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment. Adv. Drug Delivery Rev. 2022, 186, 114344.

    CAS  Google Scholar 

  6. Chen, C.; Wu, C. S.; Yu, J. M.; Zhu, X. H.; Wu, Y. H.; Liu, J. L.; Zhang, Y. Photodynamic-based combinatorial cancer therapy strategies: Tuning the properties of nanoplatform according to oncotherapy needs. Coord. Chem. Rev. 2022, 461, 214495.

    CAS  Google Scholar 

  7. Xie, J. L.; Wang, Y. W.; Choi, W.; Jangili, P.; Ge, Y. Q.; Xu, Y. J.; Kang, J. L.; Liu, L. P.; Zhang, B.; Xie, Z. J. et al. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem. Soc. Rev. 2021, 50, 9152–9201.

    CAS  Google Scholar 

  8. Chen, H.; Wan, Y. P.; Cui, X.; Li, S. L.; Lee, C. S. Recent advances in hypoxia-overcoming strategy of aggregation-induced emission photosensitizers for efficient photodynamic therapy. Adv. Healthc. Mater. 2021, 10, 2101607.

    CAS  Google Scholar 

  9. Wang, Y. Y.; Liu, Y. C.; Sun, H. W.; Guo, D. S. Type I photodynamic therapy by organic-inorganic hybrid materials: From strategies to applications. Coord. Chem. Rev. 2019, 395, 46–62.

    CAS  Google Scholar 

  10. Ethirajan, M.; Chen, Y. H.; Joshi, P.; Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 2011, 40, 340–362.

    CAS  Google Scholar 

  11. McKenzie, L. K.; Bryant, H. E.; Weinstein, J. A. Transition metal complexes as photosensitisers in one- and two-photon photodynamic therapy. Coord. Chem. Rev. 2019, 379, 2–29.

    CAS  Google Scholar 

  12. Pham, T. C.; Nguyen, V. N.; Choi, Y.; Lee, S.; Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 2021, 121, 13454–13619.

    CAS  Google Scholar 

  13. Fan, J. X.; Liu, M. D.; Li, C. X.; Hong, S.; Zheng, D. W.; Liu, X. H.; Chen, S.; Cheng, H.; Zhang, X. Z. A metal-semiconductor nanocomposite as an efficient oxygen-independent photosensitizer for photodynamic tumor therapy. Nanoscale Horiz. 2017, 2, 349–355.

    CAS  Google Scholar 

  14. Younis, M. R.; He, G.; Qu, J. L.; Lin, J.; Huang, P.; Xia, X. H. Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy. Adv. Sci. 2021, 8, 2102587.

    CAS  Google Scholar 

  15. Rodríguez-Barajas, N.; Anaya-Esparza, L. M.; Villágran-De La Mora, Z.; Sánchez-Burgos, J. A.; Pérez-Larios, A. Review of therapies using TiO2 nanomaterials for increased anticancer capability. Anticancer Agents Med. Chem. 2022, 22, 2241–2254.

    Google Scholar 

  16. Doane, T. L.; Burda, C. The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 2012, 41, 2885–2911.

    CAS  Google Scholar 

  17. Zhen, W. Y.; Liu, Y.; Jia, X. D.; Wu, L.; Wang, C.; Jiang, X. E. Reductive surfactant-assisted one-step fabrication of a BiOI/BiOIO3 heterojunction biophotocatalyst for enhanced photodynamic theranostics overcoming tumor hypoxia. Nanoscale Horiz. 2019, 4, 720–726.

    CAS  Google Scholar 

  18. Cheng, Y.; Kong, X. P.; Chang, Y.; Feng, Y. L.; Zheng, R. X.; Wu, X. Q.; Xu, K. Q.; Gao, X. F.; Zhang, H. Y. Spatiotemporally synchronous oxygen self-supply and reactive oxygen species production on Z-scheme heterostructures for hypoxic tumor therapy. Adv. Mater. 2020, 32, 1908109.

    CAS  Google Scholar 

  19. Wang, K.; Zhang, Z.; Lin, L.; Chen, J.; Hao, K.; Tian, H. Y.; Chen, X. S. Covalent organic nanosheets integrated heterojunction with two strategies to overcome hypoxic-tumor photodynamic therapy. Chem. Mater. 2019, 31, 3313–3323.

    CAS  Google Scholar 

  20. Wang, Y.; Zhao, J. X.; Chen, Z.; Zhang, F.; Wang, Q.; Guo, W.; Wang, K.; Lin, H. M.; Qu, F. Y. Construct of MoSe2/Bi2Se3 nanoheterostructure: Multimodal CT/PT imaging-guided PTT/PDT/chemotherapy for cancer treating. Biomaterials 2019, 217, 119282.

    CAS  Google Scholar 

  21. Li, S. L.; Jiang, P.; Jiang, F. L.; Liu, Y. Recent advances in nanomaterial-based nanoplatforms for chemodynamic cancer therapy. Adv. Funct. Mater. 2021, 31, 2100243.

    CAS  Google Scholar 

  22. Liu, Y.; Zhen, W. Y.; Jin, L. H.; Zhang, S. T.; Sun, G. Y.; Zhang, T. Q.; Xu, X.; Song, S. Y.; Wang, Y. H.; Liu, J. H. et al. All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano 2018, 12, 4886–4893.

    CAS  Google Scholar 

  23. Tian, Q. W.; Xue, F. F.; Wang, Y. R.; Cheng, Y. Y.; An, L.; Yang, S. P.; Chen, X. Y.; Huang, G. Recent advances in enhanced chemodynamic therapy strategies. Nano Today 2021, 39, 101162.

    CAS  Google Scholar 

  24. Zhou, Y. F.; Fan, S. Y.; Feng, L. L.; Huang, X. L.; Chen, X. Y. Manipulating intratumoral Fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv. Mater. 2021, 33, 2104223.

    CAS  Google Scholar 

  25. Jia, C. Y.; Guo, Y. X.; Wu, F. G. Chemodynamic therapy via Fenton and Fenton-like nanomaterials: Strategies and recent advances. Small 2022, 18, 2103868.

    CAS  Google Scholar 

  26. Cao, C. Y.; Wang, X. R.; Yang, N.; Song, X. J.; Dong, X. C. Recent advances of cancer chemodynamic therapy based on Fenton/Fenton-like chemistry. Chem. Sci. 2022, 13, 863–889.

    Google Scholar 

  27. Chen, J.; Chen, F.; Zhang, L.; Yang, Z. Y.; Deng, T.; Zhao, Y. F.; Zheng, T. Y.; Gan, X. L.; Zhong, H. T.; Geng, Y. Q. et al. Self-assembling porphyrins as a single therapeutic agent for synergistic cancer therapy: A one stone three birds strategy. ACS Appl. Mater. Interfaces 2021, 13, 27856–27867.

    CAS  Google Scholar 

  28. Zhang, L.; Li, C. X.; Wan, S. S.; Zhang, X. Z. Nanocatalyst-mediated chemodynamic tumor therapy. Adv. Healthc. Mater. 2022, 11, 2101971.

    CAS  Google Scholar 

  29. Fu, J. T.; Zhou, Y. X.; Liu, T.; Wang, W. H.; Zhao, Y. T.; Sun, Y.; Zhang, Y. M.; Qin, W. X.; Chen, Z. W.; Lu, C. et al. A triple-enhanced chemodynamic approach based on glucose-powered hybrid nanoreactors for effective bacteria killing. Nano Res., in press, https://doi.org/10.1007/s12274-022-4854-9.

  30. Liang, L.; Duan, Y.; Xiong, Y.; Zuo, W.; Ye, F.; Zhao, S. Synergistic cocatalytic effect of MoO3 and creatinine on Cu-Fenton reactions for efficient decomposition of H2O2. Mater. Today Chem. 2022, 24, 100805.

    CAS  Google Scholar 

  31. Zhang, R. Y.; Liu, T.; Li, W. Z.; Ma, Z. Y.; Pei, P.; Zhang, W. W.; Yang, K.; Tao, Y. G. Tumor microenvironment-responsive BSA nanocarriers for combined chemo/chemodynamic cancer therapy. J. Nanobiotechnol. 2022, 20, 223.

    CAS  Google Scholar 

  32. Zhu, H. J.; Huang, S. Y.; Ding, M. B.; Li, Z. B.; Li, J. C.; Wang, S. H.; Leong, D. T. Sulfur defect-engineered biodegradable cobalt sulfide quantum dot-driven photothermal and chemodynamic anticancer therapy. ACS Appl. Mater. Interfaces 2022, 14, 25183–25196.

    CAS  Google Scholar 

  33. Qian, Y.; Zhang, J. H.; Zou, J. L.; Wang, X. Y.; Meng, X. F.; Liu, H. J.; Lin, Y. F.; Chen, Q. W.; Sun, L.; Lin, W. C. et al. NIR-II responsive PEGylated nickel nanoclusters for photothermal enhanced chemodynamic synergistic oncotherapy. Theranostics 2022, 12, 3690–3702.

    CAS  Google Scholar 

  34. Yang, N.; Zhang, T.; Cao, C. Y.; Mao, G. X.; Shao, J. J.; Song, X. J.; Wang, W. J.; Mou, X. Z.; Dong, X. C. BSA stabilized photothermal-Fenton reactor with cisplatin for chemo/chemodynamic cascade oncotherapy. Nano Res. 2022, 15, 2235–2243.

    CAS  Google Scholar 

  35. Liu, C. H.; Wang, D. D.; Zhang, S. Y.; Cheng, Y. R.; Yang, F.; Xing, Y.; Xu, T. L.; Dong, H. F.; Zhang, X. J. Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief. ACS Nano 2019, 13, 4267–4277.

    CAS  Google Scholar 

  36. Cui, Y. Y.; Chen, X.; Cheng, Y.; Lu, X. Y.; Meng, J. J.; Chen, Z. W.; Li, M. K.; Lin, C. C.; Wang, Y. L.; Yang, J. CuWO4 nanodots for NIR-induced photodynamic and chemodynamic synergistic therapy. ACS Appl. Mater. Interfaces 2021, 13, 22150–22158.

    CAS  Google Scholar 

  37. Chen, M. Y.; Yang, J. X.; Zhou, L. L.; Hu, X. C.; Wang, C. H.; Chai, K. K.; Li, R. H.; Feng, L.; Sun, Y. T.; Dong, C. Y. et al. Dual-responsive and ROS-augmented nanoplatform for chemo/photodynamic/chemodynamic combination therapy of triple negative breast cancer. ACS Appl. Mater. Interfaces 2022, 14, 57–68.

    CAS  Google Scholar 

  38. Yang, H. Y.; Liu, R. F.; Xu, Y. X.; Qian, L. X.; Dai, Z. F. Photosensitizer nanoparticles boost photodynamic therapy for pancreatic cancer treatment. Nano-Micro Lett. 2021, 13, 35.

    Google Scholar 

  39. Wang, L.; Xu, Y. T.; Liu, C.; Si, W. L.; Wang, W. J.; Zhang, Y. W.; Zhong, L. P.; Dong, X. C.; Zhao, Y. X. Copper-doped MOF-based nanocomposite for GSH depleted chemo/photothermal/chemodynamic combination therapy. Chem. Eng. J. 2022, 438, 135567.

    CAS  Google Scholar 

  40. Lv, H. H.; Zhen, C. X.; Liu, J. Y.; Yang, P. F.; Hu, L. J.; Shang, P. Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid. Med. Cell. Longev. 2019, 2019, 3150145.

    Google Scholar 

  41. Zhang, A. M.; Zhang, Q.; Alfranca, G.; Pan, S. J.; Huang, Z. C.; Cheng, J.; Ma, Q.; Song, J.; Pan, Y. X.; Ni, J. et al. GSH-triggered sequential catalysis for tumor imaging and eradication based on starlike Au/Pt enzyme carrier system. Nano Res. 2020, 13, 160–172.

    CAS  Google Scholar 

  42. Maiorino, M.; Conrad, M.; Ursini, F. GPX4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid. Redox Signal. 2018, 29, 61–74.

    CAS  Google Scholar 

  43. Proneth, B.; Conrad, M. Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ. 2019, 26, 14–24.

    CAS  Google Scholar 

  44. Chen, X.; Li, J. B.; Kang, R.; Klionsky, D. J.; Tang, D. L. Ferroptosis: Machinery and regulation. Autophagy 2021, 17, 2054–2081.

    CAS  Google Scholar 

  45. Wang, S. F.; Li, F. Y.; Qiao, R. R.; Hu, X.; Liao, H. W.; Chen, L. M.; Wu, J. H.; Wu, H. B.; Zhao, M.; Liu, J. N. et al. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano 2018, 12, 12380–12392.

    CAS  Google Scholar 

  46. Dixon, S. J.; Lemberg, K. M.; Lamprecht, M. R.; Skouta, R.; Zaitsev, E. M.; Gleason, C. E.; Patel, D. N.; Bauer, A. J.; Cantley, A. M.; Yang, W. S. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072.

    CAS  Google Scholar 

  47. Yang, W. S.; SriRamaratnam, R.; Welsch, M. E.; Shimada, K.; Skouta, R.; Viswanathan, V. S.; Cheah, J. H.; Clemons, P. A.; Shamji, A. F.; Clish, C. B. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331.

    CAS  Google Scholar 

  48. He, H. Z.; Du, L. H.; Guo, H. L.; An, Y. C.; Lu, L. J.; Chen, Y. L.; Wang, Y.; Zhong, H. H.; Shen, J.; Wu, J. et al. Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy. Small 2020, 16, 2001251.

    CAS  Google Scholar 

  49. Wu, T. S.; Liang, X.; Liu, X.; Li, Y. M.; Wang, Y. T.; Kong, L.; Tang, M. Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia. Part. Fibre Toxicol. 2020, 17, 30.

    CAS  Google Scholar 

  50. Luo, S. W.; Ma, D.; Wei, R. L.; Yao, W.; Pang, X. R.; Wang, Y.; Xu, X. D.; Wei, X. H.; Guo, Y.; Jiang, X. Q. et al. A tumor microenvironment responsive nanoplatform with oxidative stress amplification for effective MRI-based visual tumor ferroptosis. Acta Biomater. 2022, 138, 518–527.

    CAS  Google Scholar 

  51. Jasim, K. A.; Waheed, I. F.; Topps, M.; Gesquiere, A. J. Multifunctional system for combined chemodynamic-photodynamic therapy employing the endothelin axis based on conjugated polymer nanoparticles. Polym. Chem. 2021, 12, 5449–5466.

    CAS  Google Scholar 

  52. Song, W. L.; Jia, P. F.; Zhang, T.; Dou, K. K.; Liu, L. B.; Ren, Y. P.; Liu, F. J.; Xue, J. M.; Hasanin, M. S.; Qi, H. Z. et al. Cell membrane-camouflaged inorganic nanoparticles for cancer therapy. J. Nanobiotechnol. 2022, 20, 289.

    Google Scholar 

  53. Fang, H. Y.; Li, M. T.; Liu, Q. Y.; Gai, Y. K.; Yuan, L. J.; Wang, S.; Zhang, X.; Ye, M.; Zhang, Y. X.; Gao, M. Y. et al. Ultra-sensitive nanoprobe modified with tumor cell membrane for UCL/MRI/PET multimodality precise imaging of triple-negative breast cancer. Nano-Micro Lett. 2020, 12, 62.

    CAS  Google Scholar 

  54. Guller, A. E.; Generalova, A. N.; Petersen, E. V.; Nechaev, A. V.; Trusova, I. A.; Landyshev, N. N.; Nadort, A.; Grebenik, E. A.; Deyev, S. M.; Shekhter, A. B. et al. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Res. 2015, 8, 1546–1562.

    CAS  Google Scholar 

  55. Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

    Google Scholar 

  56. Dong, F.; Zhao, Z. W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 11392–11401.

    CAS  Google Scholar 

  57. Pan, C. S.; Xu, J.; Wang, Y. J.; Li, D.; Zhu, Y. F. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv. Funct. Mater. 2012, 22, 1518–1524.

    CAS  Google Scholar 

  58. Wang, N.; Pan, Y.; Lu, T.; Li, X. Z.; Wu, S. K.; Wu, J. L. A new ribbon-ignition method for fabricating p-CuO/n-CeO2 heterojunction with enhanced photocatalytic activity. Appl. Surf. Sci. 2017, 403, 699–706.

    CAS  Google Scholar 

  59. Cheng, G.; Li, W. Q.; Ha, L.; Han, X. H.; Hao, S. J.; Wan, Y.; Wang, Z. G.; Dong, F. P.; Zou, X.; Mao, Y. W. et al. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins. J. Am. Chem. Soc. 2018, 140, 7282–7291.

    CAS  Google Scholar 

  60. Liu, Y.; Luo, J. S.; Chen, X. J.; Liu, W.; Chen, T. K. Cell membrane coating technology: A promising strategy for biomedical applications. Nano-Micro Lett. 2019, 11, 100.

    CAS  Google Scholar 

  61. Yang, H.; Ding, Y.; Tong, Z. R.; Qian, X. H.; Xu, H.; Lin, F. H.; Sheng, G. P.; Hong, L. J.; Wang, W. L.; Mao, Z. W. pH-responsive hybrid platelet membrane-coated nanobomb with deep tumor penetration ability and enhanced cancer thermal/chemodynamic therapy. Theranostics 2022, 12, 4250–4268.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial aid from the National Key Research and Development Program of China (No. 2021YFF0701800), the National Natural Science Foundation of China (Nos. 21871248, 21834007, and 22020102003), K. C. Wong Education Foundation (No. GJTD-2018-09), the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. Y201947), and Jilin Province Science and Technology Development Plan Project (No. 20220101063JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Feng, Hongjie Zhang or Daguang Wang.

Electronic Supplementary Material

12274_2022_5223_MOESM1_ESM.pdf

Engineering CeO2/CuO heterostructure anchored on upconversion nanoparticles with boosting ROS generation-primed apoptosis-ferroptosis for cancer dynamic therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Feng, J., Lv, K. et al. Engineering CeO2/CuO heterostructure anchored on upconversion nanoparticles with boosting ROS generation-primed apoptosis-ferroptosis for cancer dynamic therapy. Nano Res. 16, 5322–5334 (2023). https://doi.org/10.1007/s12274-022-5223-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5223-4

Keywords

Navigation