Skip to main content
Log in

Pt-surface oxygen vacancies coupling accelerated photo-charge extraction and activated hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Semiconductors-based heterogeneous photocatalytic water splitting has been extensively studied, but it still remains challenging to accelerate the separation of electron—hole pairs and facilitate the reaction kinetics. Here we report a general strategy to fabricate highly efficient Pt/TiO2 photocatalyst by coupling the Pt co-catalysts and surface oxygen vacancies (VO) of TiO2. TiO2 was pre-modified with alkali or alkaline earth metals ion solutions, which produce a large number of surface hydroxyl on TiO2. Subsequently, the photodeposited Pt sub-nanoparticles substitute surface hydroxyl and induce surface VO on TiO2. The coupling of Pt and surface VO on TiO2 can accelerate the extraction of photo-charges through the interaction of Pt—VO—Ti bonds and reduce the hydrogen evolution barrier, thereby promoting the photocatalytic activity. The synthesized Pt-VO-TiO2 sample exhibits a photocatalytic hydrogen evolution activity as high as 1.5 L·g−1·h−1, which is 2.2 times that of traditional Pt/TiO2. Our findings in-depth understand the synergistic effect of co-catalysts and defects on photocatalysis and open up new possibilities for achieving robust photocatalytic water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972, 238, 37–38.

    Article  CAS  Google Scholar 

  2. Thompson, T. L.; Yates, J. T. Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem. Rev. 2006, 106, 4428–4453.

    Article  CAS  Google Scholar 

  3. Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

    Article  CAS  Google Scholar 

  4. Yi, S. S.; Zhang, X. B.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Non-noble metals applied to solar water splitting. Energy. Environ. Sci. 2018, 11, 3128–3156.

    Article  CAS  Google Scholar 

  5. Pacchioni, G.; Freund, H. Controlling the charge state of supported nanoparticles in catalysis: Lessons from model systems. Chem. Soc. Rev. 2018, 47, 8474–8502.

    Article  CAS  Google Scholar 

  6. Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

    Article  CAS  Google Scholar 

  7. Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

    Article  Google Scholar 

  8. Wenderich, K.; Mul, G. Methods, mechanism, and applications of photodeposition in photocatalysis: A review. Chem. Rev. 2016, 116, 14587–14619.

    Article  CAS  Google Scholar 

  9. Moss, B.; Wang, Q.; Butler, K. T.; Grau-Crespo, R.; Selim, S.; Regoutz, A.; Hisatomi, T.; Godin, R.; Payne, D. J.; Kafizas, A. et al. Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nat. Mater. 2021, 20, 511–517.

    Article  CAS  Google Scholar 

  10. Li, L. D.; Yan, J. Q.; Wang, T.; Zhao, Z. J.; Zhang, J.; Gong, J. L.; Guan, N. J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881.

    Article  Google Scholar 

  11. Chen, H.; Yang, Z. Z.; Wang, X.; Polo-Garzon, F.; Halstenberg, P. W.; Wang, T.; Suo, X.; Yang, S. Z.; Meyer III, H. M.; Wu, Z. L. et al. Photoinduced strong metal—support interaction for enhanced catalysis. J. Am. Chem. Soc. 2021, 143, 8521–8526.

    Article  CAS  Google Scholar 

  12. Liu, M. C.; Chen, Y. B.; Su, J. Z.; Shi, J. W.; Wang, X. X.; Guo, L. J. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat. Energy 2016, 1, 16151.

    Article  CAS  Google Scholar 

  13. Bi, W. T.; Li, X. G.; Zhang, L.; Jin, T.; Zhang, L. D.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat. Commun. 2015, 6, 8647.

    Article  CAS  Google Scholar 

  14. Yang, J. H.; Wang, D.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.

    Article  CAS  Google Scholar 

  15. Li, G. K.; Jang, H.; Liu, S. G.; Li, Z. J.; Kim, M. G.; Qin, Q.; Liu, X. E.; Cho, J. The synergistic effect of Hf—O—Ru bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution. Nat. Commun. 2022, 13, 1270.

    Article  CAS  Google Scholar 

  16. Ou, G.; Xu, Y. S.; Wen, B.; Lin, R.; Ge, B. H.; Tang, Y.; Liang, Y. W.; Yang, C.; Huang, K.; Zu, D. et al. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 2018, 9, 1302.

    Article  Google Scholar 

  17. Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem., Int. Ed. 2019, 58, 12175–12179.

    Article  CAS  Google Scholar 

  18. Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L. et al. Activity and stability boosting of oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem., Int. Ed. 2021, 60, 1433–1440.

    Article  CAS  Google Scholar 

  19. Zu, X. L.; Zhao, Y.; Li, X. D.; Chen, R. H.; Shao, W. W.; Wang, Z. Q.; Hu, J.; Zhu, J. F.; Pan, Y.; Sun, Y. F. et al. Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 nanosheets. Angew. Chem., Int. Ed. 2021, 60, 13840–13846.

    Article  CAS  Google Scholar 

  20. Guo, N. K.; Xue, H.; Bao, A.; Wang, Z. H.; Sun, J.; Song, T. S.; Ge, X.; Zhang, W.; Huang, K. K.; He, F. et al. Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process. Angew. Chem., Int. Ed. 2020, 59, 13778–13784.

    Article  CAS  Google Scholar 

  21. Wei, Z.; Wang, W. C.; Li, W. L.; Bai, X. Q.; Zhao, J. F.; Tse, E. C. M.; Phillips, D. L.; Zhu, Y. F. Steering electron—hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew. Chem., Int. Ed. 2021, 60, 8236–8242.

    Article  CAS  Google Scholar 

  22. Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

    Article  Google Scholar 

  23. Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O’Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.

    Article  CAS  Google Scholar 

  24. Liu, L. Z.; Huang, H. W.; Chen, F.; Yu, H. J.; Tian, N.; Zhang, Y. H.; Zhang, T. R. Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12. Sci Bull. 2020, 65, 934–943.

    Article  CAS  Google Scholar 

  25. Wang, Z. L.; Wang, L. X.; Cheng, B.; Yu, H. G.; Yu, J. G. Photocatalytic H2 evolution coupled with furfuralcohol oxidation over Pt-modified ZnCdS solid solution. Small Methods 2021, 5, 2100979.

    Article  CAS  Google Scholar 

  26. Dai, F. X.; Guo, Z. Y.; Zhao, W. J.; Li, Z. J.; Xing, J.; Wang, L. Interfacial engineering boosting charge extraction for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 450, 138015.

    Article  CAS  Google Scholar 

  27. Tamai, K.; Hosokawa, S.; Asakura, H.; Teramura, K.; Tanaka, T. Low-temperature NOx trapping on alkali or alkaline earth metal modified TiO2 photocatalyst. Catal. Today 2019, 332, 76–82.

    Article  CAS  Google Scholar 

  28. Zhang, H. B.; Zuo, S. W.; Qiu, M.; Wang, S. B.; Zhang, Y. F.; Zhang, J.; Lou, X. W. Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eabb9823.

    Article  CAS  Google Scholar 

  29. Wang, L.; Yue, H. Q.; Hua, Z. L.; Wang, H. Y.; Li, X. B.; Li, L. C. Highly active Pt/NaxTiO2 catalyst for low temperature formaldehyde decomposition. Appl. Catal. B: Environ. 2017, 219, 301–313.

    Article  CAS  Google Scholar 

  30. Liu, F.; Feng, N. D.; Wang, Q.; Xu, J.; Qi, G. D.; Wang, C.; Deng, F. Transfer channel of photoinduced holes on a TiO2 surface as revealed by solid-state nuclear magnetic resonance and electron spin resonance spectroscopy. J. Am. Chem. Soc. 2017, 139, 10020–10028.

    Article  CAS  Google Scholar 

  31. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

    Article  CAS  Google Scholar 

  32. Jiang, X. H.; Zhang, L. S.; Liu, H. Y.; Wu, D. S.; Wu, F. Y.; Tian, L.; Liu, L. L.; Zou, J. P.; Luo, S. L.; Chen, B. B. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 23112–23116.

    Article  CAS  Google Scholar 

  33. Xiao, M.; Zhang, L.; Luo, B.; Lyu, M.; Wang, Z. L.; Huang, H. M.; Wang, S. C.; Du, A. J.; Wang, L. Z. Molten-salt-mediated synthesis of an atomic nickel co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 7230–7234.

    Article  CAS  Google Scholar 

  34. Zhu, K. N.; Zhu, Q.; Jiang, M. P.; Zhang, Y. W.; Shao, Z. Y.; Geng, Z. B.; Wang, X. Y.; Zeng, H.; Wu, X. F.; Zhang, W. et al. Modulating Ti t2g orbital occupancy in a Cu/TiO2 composite for selective photocatalytic CO2 reduction to CO. Angew. Chem., Int. Ed. 2022, 61, e202207600.

    Article  CAS  Google Scholar 

  35. Lv, T. P.; Xiao, B.; Xia, F. J.; Chen, M. P.; Zhao, J. H.; Ma, Y. X.; Wu, J. S.; Zhang, J.; Zhang, Y. M.; Liu, Q. J. Insights into synergistic effect of Pd single atoms and sub-nanoclusters on TiO2 for enhanced photocatalytic H2 evolution. Chem. Eng. J. 2022, 450, 137873.

    Article  CAS  Google Scholar 

  36. Meng, X. Y.; Ma, C.; Jiang, L. Z.; Si, R.; Meng, X. G.; Tu, Y. C.; Yu, L.; Bao, X. H.; Deng, D. H. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 10502–10507.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51802171, 52072197, and 21905154), Outstanding Youth Foundation of Shandong Province, China (No. ZR2019JQ14), Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (No. 2019KJC004), Major Scientific and Technological Innovation Project (No. 2019JZZY020405), and Taishan Scholar Program, Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant (No. ZR2020ZD09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Xing or Lei Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, F., Zhang, M., Mi, M. et al. Pt-surface oxygen vacancies coupling accelerated photo-charge extraction and activated hydrogen evolution. Nano Res. 16, 4736–4741 (2023). https://doi.org/10.1007/s12274-022-5181-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5181-x

Keywords

Navigation