Skip to main content
Log in

Conducting polymer-functionalized mesoporous metal-organic frameworks for high-performance Li-S battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It was known that mesoporous metal-organic frameworks (MOFs) with hierarchical pores and unsaturated metal sites can effectively inhibit the shuttle effect of lithium polysulfides in lithium-sulfur battery, however, the unsatisfactory structural stability and electrical conductivity limit the application of mesoporous MOFs (MMOFs) in Li-S batteries. Aiming at sensible solutions, the conductive polyaniline (PANI) was incorporated into the MMOF to enhance the discharge capacity and the cycling stability of proposed Li-S batteries, as the stability and the conductivity of the MMOF cathode was improved simultaneously. The activated MMOF-PANI provides physical and chemical adsorption of polysulfides against their shuttle effect. Moreover, the introduction of PANI into the channels of MMOF effectively improves the conductivity of MMOF, thus improving the electrochemical performance of the MMOF-PANI-based batteries. Benefiting from these synergetic effects, the S@MMOF-PANI cathode delivers improved electrochemical performance including excellent rate performance and cycling stability. The battery shows an initial capacity of 777.7 mAh·g−1 at 2.0 C and a low decay rate of 0.06% per cycle in 1,000 cycles and approximately a repeatable rate performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babu, B.; Simon, P.; Balducci, A. Fast charging materials for high power applications. Adv. Energy Mater. 2020, 10, 2001128.

    CAS  Google Scholar 

  2. Lu, Y. X.; Rong, X. H.; Hu, Y. S.; Chen, L. Q.; Li, H. Research and development of advanced battery materials in China. Energy Storage Mater. 2019, 23, 144–153.

    Google Scholar 

  3. Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 11751–11787.

    Google Scholar 

  4. Li, F.; Liu, Q. H.; Hu, J. W.; Feng, Y. Z.; He, P. B.; Ma, J. M. Recent advances in cathode materials for rechargeable lithium-sulfur batteries. Nanoscale 2019, 11, 15418–15439.

    CAS  Google Scholar 

  5. Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

    Google Scholar 

  6. Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

    CAS  Google Scholar 

  7. Li, T.; Bai, X.; Gulzar, U.; Bai, Y. J.; Capiglia, C.; Deng, W.; Zhou, X. F.; Liu, Z. P.; Feng, Z. F.; Zaccaria, R. P. A comprehensive understanding of lithium-sulfur battery technology. Adv. Funct. Mater. 2019, 29, 1901730.

    Google Scholar 

  8. Zhao, R.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235–2259.

    CAS  Google Scholar 

  9. Zheng, Z. J.; Ye, H.; Guo, Z. P. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries. Energy Environ. Sci. 2021, 14, 1835–1853.

    CAS  Google Scholar 

  10. Liang, Z. B.; Qu, C.; Guo, W. H.; Zou, R. Q.; Xu, Q. Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. 2018, 30, 1702891.

    Google Scholar 

  11. Hu, Z. G.; Zhao, D. Metal-organic frameworks with Lewis acidity: Synthesis, characterization, and catalytic applications. CrystEngComm 2017, 19, 4066–4081.

    CAS  Google Scholar 

  12. Baumann, A. E.; Burns, D. A.; Díaz, J. C.; Thoi, V. S. Lithiated defect sites in Zr metal-organic framework for enhanced sulfur utilization in Li-S batteries. ACS Appl. Mater. Interfaces 2019, 11, 2159–2167.

    CAS  Google Scholar 

  13. Liu, X. F.; Guo, X. Q.; Wang, R.; Liu, Q. C.; Li, Z. J.; Zang, S. Q.; Mak, T. C. W. Manganese cluster-based MOF as efficient polysulfide-trapping platform for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 2838–2844.

    CAS  Google Scholar 

  14. Park, J. H.; Choi, K. M.; Lee, D. K.; Moon, B. C.; Shin, S. R.; Song, M. K.; Kang, J. K. Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals. Sci. Rep. 2016, 6, 25555.

    CAS  Google Scholar 

  15. Hong, X. J.; Tan, T. X.; Guo, Y. K.; Tang, X. Y.; Wang, J. Y.; Qin, W.; Cai, Y. P. Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries. Nanoscale 2018, 10, 2774–2780.

    CAS  Google Scholar 

  16. Li, M. T.; Sun, Y.; Zhao, K. S.; Wang, Z.; Wang, X. L.; Su, Z. M.; Xie, H. M. Metal-organic framework with aromatic rings tentacles: High sulfur storage in Li-S batteries and efficient benzene homologues distinction. ACS Appl. Mater. Interfaces 2016, 8, 33183–33188.

    CAS  Google Scholar 

  17. Wang, Z. Q.; Wang, B. X.; Yang, Y.; Cui, Y. J.; Wang, Z. Y.; Chen, B. L.; Qian, G. D. Mixed-metal-organic framework with effective Lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2015, 7, 20999–21004.

    CAS  Google Scholar 

  18. Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size? Adv. Mater 2022, 34, 2107836.

    CAS  Google Scholar 

  19. Rana, M.; AL-Fayaad, H. A.; Luo, B.; Lin, T.; Ran, L. B.; Clegg, J. K.; Gentle, I.; Knibbe, R. Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy 2020, 75, 105009.

    CAS  Google Scholar 

  20. Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

    CAS  Google Scholar 

  21. Han, Z. Y.; Gao, R. H.; Jia, Y. Y.; Zhang, M. T.; Lao, Z. J.; Chen, B.; Zhang, Q.; Li, C.; Lv, W.; Zhou, G. M. Catalytic effect in Li-S batteries: From band theory to practical application. Mater Today 2022, 57, 84–120.

    CAS  Google Scholar 

  22. Peng, L.; Yang, S. L.; Jawahery, S.; Moosavi, S. M.; Huckaba, A. J.; Asgari, M.; Oveisi, E.; Nazeeruddin, M. K.; Smit, B.; Queen, W. L. Preserving porosity of mesoporous metal-organic frameworks through the introduction of polymer guests. J. Am. Chem. Soc. 2019, 141, 12397–12405.

    CAS  Google Scholar 

  23. Li, Z. Q.; Li, C. X.; Ge, X. L.; Ma, J. Y.; Zhang, Z. W.; Li, Q.; Wang, C. X.; Yin, L. W. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 2016, 23, 15–26.

    CAS  Google Scholar 

  24. Cao, X. H.; Tan, C. L.; Sindoro, M.; Zhang, H. Hybrid micro-/nanostructures derived from metal-organic frameworks: Preparation and applications in energy storage and conversion. Chem. Soc. Rev. 2017, 46, 2660–2677.

    CAS  Google Scholar 

  25. Pan, T. Y.; Li, Z. H.; He, Q.; Xu, X.; He, L.; Meng, J. S.; Zhou, C.; Zhao, Y.; Mai, L. Uniform zeolitic imidazolate framework coating via in situ recoordination for efficient polysulfide trapping. Energy Storage Mater. 2019, 23, 55–61.

    Google Scholar 

  26. Zhang, J. T.; Yu, L.; Lou, X. W. D. Embedding CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks for enhanced lithium storage properties. Nano Res. 2017, 10, 4298–4304.

    CAS  Google Scholar 

  27. Liu, X. W.; Sun, T. J.; Hu, J. L.; Wang, S. D. Composites of metal-organic frameworks and carbon-based materials: Preparations, functionalities and applications. J. Mater. Chem. A 2016, 4, 3584–3616.

    CAS  Google Scholar 

  28. Zhao, Z. X.; Wang, S.; Liang, R.; Li, Z.; Shi, Z. C.; Chen, G. H. Graphene-wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li-S batteries. J. Mater. Chem. A 2014, 2, 13509–13512.

    CAS  Google Scholar 

  29. Hou, Y. P.; Mao, H. Z.; Xu, L. Q. MIL-100(V) and MIL-100(V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Res. 2017, 10, 344–353.

    CAS  Google Scholar 

  30. Baumann, A. E.; Downing, J. R.; Burns, D. A.; Hersam, M. C.; Thoi, V. S. Graphene-metal-organic framework composite sulfur electrodes for Li-S batteries with high volumetric capacity. ACS Appl. Mater. Interfaces 2020, 12, 37173–37181.

    CAS  Google Scholar 

  31. Mao, Y. Y.; Li, G. R.; Guo, Y.; Li, Z. P.; Liang, C. D.; Peng, X. S.; Lin, Z. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14628.

    Google Scholar 

  32. Zhang, H.; Zhao, W. Q.; Zou, M. C.; Wang, Y. S.; Chen, Y. J.; Xu, L.; Wu, H. S.; Cao, A. Y. 3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Adv. Energy Mater 2018, 8, 1800013.

    Google Scholar 

  33. Liu, X.; Wang, S.; Wang, A.; Wang, Z.; Chen, J.; Zeng, Q.; Chen, P.; Liu, W.; Li, Z.; Zhang, L. A new cathode material synthesized by a thiol-modified metal-organic framework (MOF) covalently connecting sulfur for superior long-cycling stability in lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 24515–24523.

    CAS  Google Scholar 

  34. Jiang, H. Q.; Liu, X. C.; Wu, Y. S.; Shu, Y. F.; Gong, X.; Ke, F. S.; Deng, H. X. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 3916–3921.

    CAS  Google Scholar 

  35. AlKaabi, K.; Wade, C. R.; Dincă, M. Transparent-to-dark electrochromic behavior in naphthalene-diimide-based mesoporous MOF-74 analogs. Chem 2016, 1, 264–272.

    CAS  Google Scholar 

  36. Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B. L.; O’Keeffe, M.; Yaghi, O. M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504–1518.

    CAS  Google Scholar 

  37. Zeng, P.; Yuan, C.; An, J.; Yang, X. F.; Cheng, C.; Yan, T. R.; Liu, G. L.; Chan, T. S.; Kang, J.; Zhang, L. et al. Achieving reversible precipitation-decomposition of reactive Li2S towards high-areal-capacity lithium-sulfur batteries with a wide-temperature range. Energy Storage Mater. 2022, 44, 425–432.

    Google Scholar 

  38. Yang, Y.; Hong, X. J.; Song, C. L.; Li, G. H.; Zheng, Y. X.; Zhou, D. D.; Zhang, M.; Cai, Y. P.; Wang, H. X. Lithium bis(trifluoromethanesulfonyl)imide assisted dual-functional separator coating materials based on covalent organic frameworks for high-performance lithium-selenium sulfide batteries. J. Mater. Chem. A 2019, 7, 16323–16329.

    CAS  Google Scholar 

  39. Song, N.; Xi, B. J.; Wang, P.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium-sulfur batteries. Nano Res. 2022, 15, 1424–1432.

    CAS  Google Scholar 

  40. Chen, X. X.; Ding, X. Y.; Muheiyati, H.; Feng, Z. Y.; Xu, L. Q.; Ge, W. N.; Qian, Y. T. Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. Nano Res. 2019, 12, 1115–1120.

    CAS  Google Scholar 

  41. Yang, G.; Tan, J.; Jin, H.; Kim, Y. H.; Yang, X. Y.; Son, D. H.; Ahn, S.; Zhou, H. C.; Yu, C. Creating effective nanoreactors on carbon nanotubes with mechanochemical treatments for high-areal-capacity sulfur cathodes and lithium anodes. Adv. Funct. Mater. 2018, 28, 1800595.

    Google Scholar 

  42. Wang, R.; Mi, J. S.; Dong, X. Y.; Liu, X. F.; Lv, Y. R.; Du, J.; Zhao, J. Y.; Zang, S. Q. Creating a polar surface in carbon frameworks from single-source metal-organic frameworks for advanced CO2 uptake and lithium-sulfur batteries. Chem. Mater. 2019, 31, 4258–4266.

    CAS  Google Scholar 

  43. Zhang, B.; Wang, L.; Wang, B.; Zhai, Y. J.; Zeng, S. Y.; Zhang, M.; Qian, Y. T.; Xu, L. Q. Petroleum coke derived porous carbon/NiCoP with efficient reviving catalytic and adsorptive activity as sulfur host for high performance lithium-sulfur batteries. Nano Res. 2022, 15, 4058–4067.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21825106, 92061201, and 21975065), the Natural Science Foundation of Henan Province (No. 22230020289), the Henan Postdoctoral Science Foundation (No. 202102002), and Zhengzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-Quan Zang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XF., Wang, YR., Chen, H. et al. Conducting polymer-functionalized mesoporous metal-organic frameworks for high-performance Li-S battery. Nano Res. 16, 4867–4873 (2023). https://doi.org/10.1007/s12274-022-5116-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5116-6

Keywords

Navigation