Skip to main content
Log in

Single-atom nanozymes towards central nervous system diseases

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanozymes have a similar catalytic mechanism to natural enzymes, with excellent performance, facile synthesis, and better stability. Single-atom nanozymes are developed based on single-atom catalysts due to their advantages in coordination structure and electronic configuration, making them highly enzymatic-like biomimetic catalysts. Central nervous system (CNS) diseases have become one of the biggest killers of human health because they are difficult to diagnose and treat, expensive, and result in serious illness. Single-atom nanozymes have been widely used for biomedical applications, especially in oxidative-stress-induced diseases and most CNS diseases which are closely related to oxidative stress. Therefore, single-atom nanozymes show promising application prospects for the treatment of CNS diseases. In addition, due to the outstanding material properties and sensitivity of single-atom nanozymes, they also exhibit great advantages in detecting various CNS disease markers for diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benkovic, S. J.; Hammes-Schiffer, S. A perspective on enzyme catalysis. Science 2003, 301, 1196–1202.

    CAS  Google Scholar 

  2. Knowles, J. R. Enzyme catalysis: Not different, just better. Nature 1991, 350, 121–124.

    CAS  Google Scholar 

  3. Murakami, Y.; Kikuchi, J. I.; Hisaeda, Y.; Hayashida, O. Artificial enzymes. Chem. Rev. 1996, 96, 721–758.

    CAS  Google Scholar 

  4. Leveson-Gower, R. B.; Mayer, C.; Roelfes, G. The importance of catalytic promiscuity for enzyme design and evolution. Nat. Rev. Chem. 2019, 3, 687–705.

    CAS  Google Scholar 

  5. Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105.

    CAS  Google Scholar 

  6. Dong, Z. Y.; Luo, Q.; Liu, J. Q. Artificial enzymes based on supramolecular scaffolds. Chem. Soc. Rev. 2012, 41, 7890–7908.

    CAS  Google Scholar 

  7. Kornienko, N.; Zhang, J. Z.; Sakimoto, K. K.; Yang, P. D.; Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 2018, 13, 890–899.

    CAS  Google Scholar 

  8. Ma, L.; Jiang, F. B.; Fan, X.; Wang, L. Y.; He, C.; Zhou, M.; Li, S.; Luo, H. R.; Cheng, C.; Qiu, L. Metal—organic-framework-engineered enzyme-mimetic catalysts. Adv. Mater. 2020, 32, e2003065.

    Google Scholar 

  9. Kang, T.; Kim, Y. G.; Kim, D.; Hyeon, T. Inorganic nanoparticles with enzyme-mimetic activities for biomedical applications. Coord. Chem. Rev. 2020, 403, 213092.

    CAS  Google Scholar 

  10. Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 2002, 102, 1–28.

    CAS  Google Scholar 

  11. Nanda, V.; Koder, R. L. Designing artificial enzymes by intuition and computation. Nat. Chem. 2010, 3, 15–24.

    Google Scholar 

  12. Meeuwissen, J.; Reek, J. N. H. Supramolecular catalysis beyond enzyme mimics. Nat. Chem. 2010, 3, 615–621.

    Google Scholar 

  13. Lovelock, S. L.; Crawshaw, R.; Basler, S.; Levy, C.; Baker, D.; Hilvert, D.; Green, A. P. The road to fully programmable protein catalysis. Nature 2022, 606, 49–58.

    CAS  Google Scholar 

  14. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    CAS  Google Scholar 

  15. Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

    CAS  Google Scholar 

  16. Zhang, R. F.; Yan, X. Y.; Fan, K. L. Nanozymes inspired by natural enzymes. Acc. Mater. Res. 2021, 2, 534–547.

    CAS  Google Scholar 

  17. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    CAS  Google Scholar 

  18. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    CAS  Google Scholar 

  19. Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

    CAS  Google Scholar 

  20. Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704.

    CAS  Google Scholar 

  21. Robert, A.; Meunier, B. How to define a nanozyme. ACS Nano 2022, 16, 6956–6959.

    CAS  Google Scholar 

  22. Wei, H.; Gao, L. Z.; Fan, K. L.; Liu, J. W.; He, J. Y.; Qu, X. G.; Dong, S. J.; Wang, E. K.; Yan, X. Y. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269.

    CAS  Google Scholar 

  23. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    CAS  Google Scholar 

  24. Zhao, H. P.; Zhang, R. F.; Yan, X. Y.; Fan, K. L. Superoxide dismutase nanozymes: An emerging star for anti-oxidation. J. Mater. Chem. B 2021, 9, 6939–6957.

    CAS  Google Scholar 

  25. Wang, D. D.; Wu, H. H.; Phua, S. Z. F.; Yang, G. B.; Qi Lim, W.; Gu, L.; Qian, C.; Wang, H. B.; Guo, Z.; Chen, H. Z. et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 2020, 11, 357.

    Google Scholar 

  26. Vernekar, A. A.; Sinha, D.; Srivastava, S.; Paramasivam, P. U.; D’Silva, P.; Mugesh, G. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat. Commun. 2014, 5, 5301.

    CAS  Google Scholar 

  27. Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

    CAS  Google Scholar 

  28. Wang, Z. R.; Zhang, R. F.; Yan, X. Y.; Fan, K. L. Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Mater. Today 2020, 41, 81–119.

    CAS  Google Scholar 

  29. Wang, H.; Wan, K. W.; Shi, X. H. Recent advances in nanozyme research. Adv. Mater. 2019, 31, 1805368.

    CAS  Google Scholar 

  30. Wang, Q. Q.; Wei, H.; Zhang, Z. Q.; Wang, E. K.; Dong, S. J. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Analyt. Chem. 2018, 105, 218–224.

    CAS  Google Scholar 

  31. Meng, Y. T.; Li, W. F.; Pan, X. L.; Gadd, G. M. Applications of nanozymes in the environment. Environ. Sci. Nano 2020, 7, 1305–1318.

    CAS  Google Scholar 

  32. Li, R. Z.; Wang, D. S. Understanding the structure—performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    CAS  Google Scholar 

  33. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    CAS  Google Scholar 

  34. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Google Scholar 

  35. Cheng, J. L.; Wang, D. S. 2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chin. J. Catal. 2022, 43, 1380–1398.

    CAS  Google Scholar 

  36. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru—Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed., 2022, 61, e202205946.

    CAS  Google Scholar 

  37. Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy, in press, https://doi.org/10.1002/cey2.194.

  38. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    CAS  Google Scholar 

  39. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    CAS  Google Scholar 

  40. Guo, W. X.; Wang, Z. Y.; Wang, X. Q.; Wu, Y. E. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 2021, 33, 2004287.

    CAS  Google Scholar 

  41. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2011, 2, 65–81.

    Google Scholar 

  42. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    CAS  Google Scholar 

  43. Beniya, A.; Higashi, S. Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2019, 2, 590–602.

    Google Scholar 

  44. Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

    CAS  Google Scholar 

  45. Chang, B. S.; Zhang, L. Q.; Wu, S. L.; Sun, Z. Y.; Cheng, Z. Engineering single-atom catalysts toward biomedical applications. Chem. Soc. Rev. 2022, 51, 3688–3734.

    CAS  Google Scholar 

  46. Xu, Q.; Guo, C. X.; Li, B. B.; Zhang, Z. D.; Qiu, Y. J.; Tian, S. B.; Zheng, L. R.; Gu, L.; Yan, W. S.; Wang, D. S. et al. Al3+ dopants induced Mg2+ vacancies stabilizing single-atom Cu catalyst for efficient free-radical hydrophosphinylation of alkenes. J. Am. Chem. Soc. 2022, 144, 4321–4326.

    CAS  Google Scholar 

  47. Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59.

    CAS  Google Scholar 

  48. Hou, Z. Q.; Dai, L. Y.; Deng, J. G.; Zhao, G. F.; Jing, L.; Wang, Y. S.; Yu, X. H.; Gao, R. Y.; Tian, X. R.; Dai, H. X. et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst. Angew. Chem., Int. Ed. 2022, 61, e202201655.

    CAS  Google Scholar 

  49. Xiang, H. J.; Feng, W.; Chen, Y. Single-atom catalysts in catalytic biomedicine. Adv. Mater. 2020, 32, 1905994.

    CAS  Google Scholar 

  50. Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

    CAS  Google Scholar 

  51. Li, W. H.; Yang, J. R.; Wang, D. S.; Li, Y. D. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022, 5, 119–140.

    Google Scholar 

  52. Wang, Y. C.; Chu, F. L.; Zeng, J.; Wang, Q. J.; Naren, T.; Li, Y. Y.; Cheng, Y.; Lei, Y. P.; Wu, F. X. Single atom catalysts for fuel cells and rechargeable batteries: Principles, advances, and opportunities. ACS Nano 2021, 15, 210–239.

    CAS  Google Scholar 

  53. Jiao, L.; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.

    CAS  Google Scholar 

  54. Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

    CAS  Google Scholar 

  55. Xue, Z. H.; Luan, D. Y.; Zhang, H. B.; Lou, X. W. Single-atom catalysts for photocatalytic energy conversion. Joule 2022, 6, 92–133.

    CAS  Google Scholar 

  56. Fan, Y.; Liu, S. G.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. ACS Nano 2021, 15, 2005–2037.

    CAS  Google Scholar 

  57. Zhuang, J. H.; Wang, D. S. Current advances and future challenges of single-atom catalysis. Chem. J. Chin. Univ., 2022, 43, 20220043.

    Google Scholar 

  58. Cui, X. J.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 2011, 1, 385–397.

    Google Scholar 

  59. Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

    CAS  Google Scholar 

  60. Li, L. L.; Chang, X.; Lin, X. Y.; Zhao, Z. J.; Gong, J. L. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178.

    CAS  Google Scholar 

  61. Zhang, W. H.; Fu, Q.; Luo, Q. Q.; Sheng, L.; Yang, J. L. Understanding single-atom catalysis in view of theory. JACS Au 2021, 1, 2130–2145.

    CAS  Google Scholar 

  62. Peng, B. S.; Liu, H. T.; Liu, Z. Y.; Duan, X. F.; Huang, Y. Toward rational design of single-atom catalysts. J. Phys. Chem. Lett. 2021, 13, 2837–2847.

    Google Scholar 

  63. Yan, H.; Zhang, N. Q.; Wang, D. S. Highly efficient CeO2-supported noble-metal catalysts: From single atoms to nanoclusters. Chem Catal. 2022, 2, 1594–1623.

    CAS  Google Scholar 

  64. Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem. 2020, 132, 2585–2596.

    Google Scholar 

  65. Wu, W. W.; Huang, L.; Wang, E. K.; Dong, S. J. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 2020, 11, 9741–9756.

    CAS  Google Scholar 

  66. Zhang, H. B.; Lu, X. F.; Wu, Z. P.; Lou, X. W. D. Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 2020, 6, 1288–1301.

    CAS  Google Scholar 

  67. Wang, D. D.; Zhao, Y. L. Single-atom engineering of metal-organic frameworks toward healthcare. Chem 2021, 7, 2635–2671.

    CAS  Google Scholar 

  68. Zhang, X. L.; Li, G. L.; Chen, G.; Wu, D.; Zhou, X. X.; Wu, Y. N. Single-atom nanozymes: A rising star for biosensing and biomedicine. Coord. Chem. Rev. 2020, 418, 213376.

    CAS  Google Scholar 

  69. Ma, W. J.; Mao, J. J.; Yang, X. T.; Pan, C.; Chen, W. X.; Wang, M.; Yu, P.; Mao, L. Q.; Li, Y. D. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. 2019, 55, 159–162.

    CAS  Google Scholar 

  70. Zhao, C.; Xiong, C.; Liu, X. K.; Qiao, M.; Li, Z. J.; Yuan, T. W.; Wang, J.; Qu, Y. T.; Wang, X. Q.; Zhou, F. Y. et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 2019, 55, 2285–2288.

    CAS  Google Scholar 

  71. Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

    CAS  Google Scholar 

  72. Zhao, Y. F.; Zhou, H.; Zhu, X. R.; Qu, Y. T.; Xiong, C.; Xue, Z. G.; Zhang, Q. W.; Liu, X. K.; Zhou, F. Y. et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat. Catal. 2021, 4, 134–143.

    CAS  Google Scholar 

  73. Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

    CAS  Google Scholar 

  74. Daelman, N.; Capdevila-Cortada, M.; López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 2019, 18, 1215–1221.

    CAS  Google Scholar 

  75. Wang, S. W.; Borisevich, A. Y.; Rashkeev, S. N.; Glazoff, M. V.; Sohlberg, K.; Pennycook, S. J.; Pantelides, S. T. Dopants adsorbed as single atoms prevent degradation of catalysts. Nat. Mater. 2004, 3, 143–146.

    CAS  Google Scholar 

  76. Lee, B. H.; Park, S.; Kim, M.; Sinha, A. K.; Lee, S. C.; Jung, E.; Chang, W. J.; Lee, K. S.; Kim, J. H.; Cho, S. P. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 2019, 18, 620–626.

    CAS  Google Scholar 

  77. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

    CAS  Google Scholar 

  78. Hejazi, S.; Mohajernia, S.; Osuagwu, B.; Zoppellaro, G.; Andryskova, P.; Tomanec, O.; Kment, S.; Zbofil, R.; Schmuki, P. On the controlled loading of single platinum atoms as a Co-catalyst on TiO2 anatase for optimized photocatalytic H2 generation. Adv. Mater. 2020, 32, e1908505.

    Google Scholar 

  79. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  80. Lu, Y. B.; Wang, J. M.; Yu, L.; Kovarik, L.; Zhang, X. W.; Hoffman, A. S.; Gallo, A.; Bare, S. R.; Sokaras, D.; Kroll, T. et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2019, 2, 149–156.

    CAS  Google Scholar 

  81. Zhou, A. W.; Wang, D. S.; Li, Y. D. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microstructures 2022, 2, 2022005.

    CAS  Google Scholar 

  82. Peng, Y.; Lu, B. Z.; Chen, S. W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995.

    Google Scholar 

  83. Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

    CAS  Google Scholar 

  84. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    CAS  Google Scholar 

  85. Zhao, J.; Ji, S. F.; Guo, C. X.; Li, H. J.; Dong, J. C.; Guo, P.; Wang, D. S.; Li, Y. D.; Toste, F. D. A heterogeneous iridium single-atomsite catalyst for highly regioselective carbenoid O-H bond insertion. Nat. Catal. 2021, 4, 523–531.

    CAS  Google Scholar 

  86. Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

    CAS  Google Scholar 

  87. Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

    CAS  Google Scholar 

  88. Yang, J.; Qiu, Z. Y.; Zhao, C. M.; Wei, W. C.; Chen, W. X.; Li, Z. J.; Qu, Y. T.; Dong, J. C.; Luo, J.; Li, Z. Y. et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem., Int. Ed. 2018, 57, 14095–14100.

    CAS  Google Scholar 

  89. Chang, J. F.; Wang, G. Z.; Wang, M. Y.; Wang, Q.; Li, B. Y.; Zhou, H.; Zhu, Y. M.; Zhang, W.; Omer, M.; Orlovskaya, N. et al. Improving Pd-N-C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment. Nat. Energy 2021, 6, 1144–1153.

    CAS  Google Scholar 

  90. Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158–2163.

    CAS  Google Scholar 

  91. Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

    CAS  Google Scholar 

  92. Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

    CAS  Google Scholar 

  93. Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal—organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

    CAS  Google Scholar 

  94. Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 2021, 6, 1054–1066.

    CAS  Google Scholar 

  95. Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.

    CAS  Google Scholar 

  96. Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

    CAS  Google Scholar 

  97. Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

    CAS  Google Scholar 

  98. Xu, J. W.; Zheng, X. L.; Feng, Z. P.; Lu, Z. Y.; Zhang, Z. W.; Huang, W.; Li, Y. B.; Vuckovic, D.; Li, Y. Q.; Dai, S. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 2021, 4, 233–241.

    Google Scholar 

  99. Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

    CAS  Google Scholar 

  100. Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

    CAS  Google Scholar 

  101. Zhang, T. J.; Walsh, A. G.; Yu, J. H.; Zhang, P. Single-atom alloy catalysts: Structural analysis, electronic properties, and catalytic activities. Chem. Soc. Rev. 2021, 50, 569–588.

    CAS  Google Scholar 

  102. Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. P-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

    CAS  Google Scholar 

  103. Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 3, 304–313.

    Google Scholar 

  104. Zhou, L. N.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M. H.; Dong, L. L.; Henderson, L. et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 2020, 5, 61–70.

    CAS  Google Scholar 

  105. Duchesne, P. N.; Li, Z. Y.; Deming, C. P.; Fung, V.; Zhao, X. J.; Yuan, J.; Regier, T.; Aldalbahi, A.; Almarhoon, Z.; Chen, S. W. et al. Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 2011, 17, 1033–1039.

    Google Scholar 

  106. Marcinkowski, M. D.; Darby, M. T.; Liu, J. L.; Wimble, J. M.; Lucci, F. R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E. C. H. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation. Nat. Chem. 2011, 10, 325–332.

    Google Scholar 

  107. Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

    CAS  Google Scholar 

  108. Jiang, L. Z.; Liu, K. L.; Hung, S. F.; Zhou, L. Y.; Qin, R. X.; Zhang, Q. H.; Liu, P. X.; Gu, L.; Chen, H. M.; Fu, G. et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 2020, 15, 848–853.

    CAS  Google Scholar 

  109. Zheng, T. T.; Liu, C. X.; Guo, C. X.; Zhang, M. L.; Li, X.; Jiang, Q.; Xue, W. Q.; Li, H. L.; Li, A. W.; Pao, C. W. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via singleatom alloying. Nat. Nanotechnol. 2021, 16, 1386–1393.

    CAS  Google Scholar 

  110. Hannagan, R. T.; Giannakakis, G.; Réocreux, R.; Schumann, J.; Finzel, J.; Wang, Y. C.; Michaelides, A.; Deshlahra, P.; Christopher, P.; Flytzani-Stephanopoulos, M. et al. First-principles design of a single-atom-alloy propane dehydrogenation catalyst. Science 2021, 372, 1444–1447.

    CAS  Google Scholar 

  111. Wang, X.; Zhang, Y. W.; Wu, J.; Zhang, Z.; Liao, Q. L.; Kang, Z.; Zhang, Y. Single-atom engineering to ignite 2D transition metal dichalcogenide based catalysis: Fundamentals, progress, and beyond. Chem. Rev. 2022, 122, 1273–1348.

    CAS  Google Scholar 

  112. Wang, Y.; Qi, K.; Yu, S. S.; Jia, G. R.; Cheng, Z. L.; Zheng, L. R.; Wu, Q.; Bao, Q. L.; Wang, Q. Q.; Zhao, J. X. et al. Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co-MoS2. Nano-Micro Lett. 2019, 11, 102.

    Google Scholar 

  113. Wang, Z. H.; Wu, F. G. Emerging single-atom catalysts/nanozymes for catalytic biomedical applications. Adv. Healthc. Mater. 2022, 11, 2101682.

    CAS  Google Scholar 

  114. Pei, J. H.; Zhao, R. L.; Mu, X. Y.; Wang, J. Y.; Liu, C. L.; Zhang, X. D. Single-atom nanozymes for biological applications. Biomater. Sci. 2020, 5, 6428–6441.

    Google Scholar 

  115. Jin, H.; Ye, D. X.; Shen, L. H.; Fu, R. X.; Tang, Y.; Jung, J. C. Y.; Zhao, H. B.; Zhang, J. Perspective for single atom nanozymes based sensors: Advanced materials, sensing mechanism, selectivity regulation, and applications. Anal. Chem. 2022, 94, 1499–1509.

    CAS  Google Scholar 

  116. Jiang, B.; Liang, M. M. Advances in single-atom nanozymes research. Chin. J. Chem. 2021, 39, 174–180.

    CAS  Google Scholar 

  117. Shen, L. H.; Ye, D. X.; Zhao, H. B.; Zhang, J. J. Perspectives for single-atom nanozymes: Advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 2021, 93, 1221–1231.

    CAS  Google Scholar 

  118. Jiao, L.; Wu, J. B.; Zhong, H.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Chen, Y. F.; Yan, H. Y.; Zhang, Q. H.; Gu, W. L. et al. Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 2020, 10, 6422–6429.

    CAS  Google Scholar 

  119. Jiao, L.; Xu, W. Q.; Zhang, Y.; Wu, Y.; Gu, W. L.; Ge, X. X.; Chen, B. B.; Zhu, C. Z.; Guo, S. J. Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity. Nano Today 2020, 35, 100971.

    CAS  Google Scholar 

  120. Jiao, L.; Kang, Y. K.; Chen, Y. F.; Wu, N. N.; Wu, Y.; Xu, W. Q.; Wei, X. Q.; Wang, H. J.; Gu, W. L.; Zheng, L. R. et al. Unsymmetrically coordinated single Fe-N3S1 sites mimic the function of peroxidase. Nano Today 2021, 40, 101261.

    CAS  Google Scholar 

  121. Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.

    CAS  Google Scholar 

  122. Xu, Y.; Xue, J.; Zhou, Q.; Zheng, Y. J.; Chen, X. H.; Liu, S. Q.; Shen, Y. F.; Zhang, Y. J. The Fe-N-C nanozyme with both accelerated and inhibited biocatalytic activities capable of accessing drug-drug interactions. Angew. Chem., Int. Ed. 2020, 59, 14498–14503.

    CAS  Google Scholar 

  123. Barnham, K. J.; Masters, C. L.; Bush, A. I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004, 3, 205–214.

    CAS  Google Scholar 

  124. Sies, H.; Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 31, 363–383.

    Google Scholar 

  125. Andersen, J. K. Oxidative stress in neurodegeneration: Cause or consequence? Nat. Med. 2004, 10, S18–S25.

    Google Scholar 

  126. Chen, K.; Sun, S.; Wang, J. Y.; Zhang, X. D. Catalytic nanozymes for central nervous system disease. Coord. Chem. Rev. 2021, 432, 213751.

    CAS  Google Scholar 

  127. Nakao, N.; Frodl, E. M.; Widner, H.; Carlson, E.; Eggerding, F. A.; Epstein, C. J.; Brundin, P. Overexpressing Cu/Zn superoxide dismutase enhances survival of transplanted neurons in a rat model of Parkinson’s disease. Nat. Med. 1995, 1, 226–231.

    CAS  Google Scholar 

  128. Greenlund, L. J. S.; Deckwerth, T. L.; Johnson, E. M. Jr. Superoxide dismutase delays neuronal apoptosis:A role for reactive oxygen species in programmed neuronal death. Neuron 1995, 14, 303–315.

    CAS  Google Scholar 

  129. Yan, R. J.; Sun, S.; Yang, J.; Long, W.; Wang, J. Y.; Mu, X. Y.; Li, Q. F.; Hao, W. T.; Zhang, S. F.; Liu, H. L. et al. Nanozyme-based bandage with single-atom catalysis for brain trauma. ACS Nano 2019, 13, 11552–11560.

    CAS  Google Scholar 

  130. Cao, F. F.; Zhang, L.; You, Y. W.; Zheng, L. R.; Ren, J. S.; Qu, X. G. An enzyme-mimicking single-atom catalyst as an efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angew. Chem., Int. Ed. 2020, 59, 5108–5115.

    CAS  Google Scholar 

  131. Yang, J.; Zhang, R. F.; Zhao, H. Q.; Qi, H. F.; Li, J. Y.; Li, J. F.; Zhou, X. Y.; Wang, A. Q.; Fan, K. L.; Yan, X. Y. et al. Bioinspired copper single-atom nanozyme as a superoxide dismutase-like antioxidant for sepsis treatment. Exploration 2022, 3, 20210267.

    Google Scholar 

  132. Xu, Q. Q.; Zhang, Y. T.; Yang, Z. L.; Jiang, G. H.; Lv, M. Z.; Wang, H.; Liu, C. H.; Xie, J. N.; Wang, C. Y.; Guo, K. et al. Tumor microenvironment-activated single-atom platinum nanozyme with H2O2 self-supplement and O2-evolving for tumor-specific cascade catalysis chemodynamic and chemoradiotherapy. Theranostics 2022, 13, 5155–5171.

    Google Scholar 

  133. Zou, Y.; Guo, X. Y.; Bian, X. Q.; Zhang, Y. F.; Lin, W.; Huang, S. P.; Chen, Z. F.; Ding, K. N. Tailoring 2-electron oxygen reduction reaction selectivity on h-BN-based single-atom catalysts from superoxide dismutase: A DFT investigation. Appl. Surf. Sci. 2022, 592, 153233.

    CAS  Google Scholar 

  134. Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C. et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew. Chem., Int. Ed. 2021, 60, 9480–9488.

    CAS  Google Scholar 

  135. Su, Y. T.; Wu, F.; Song, Q. X.; Wu, M. J.; Mohammadniaei, M.; Zhang, T. W.; Liu, B. L.; Wu, S. S.; Zhang, M.; Li, A. et al. Dual enzyme-mimic nanozyme based on single-atom construction strategy for photothermal-augmented nanocatalytic therapy in the second near-infrared biowindow. Biomaterials 2022, 281, 121325.

    CAS  Google Scholar 

  136. Mason, R. P.; Casu, M.; Butler, N.; Breda, C.; Campesan, S.; Clapp, J.; Green, E. W.; Dhulkhed, D.; Kyriacou, C. P.; Giorgini, F. Glutathione peroxidase activity is neuroprotective in models of Huntington’s disease. Nat. Genet. 2013, 45, 1249–1254.

    CAS  Google Scholar 

  137. Lin, Y.; Kannan, P.; Zeng, Y. B.; Qiu, B.; Guo, L. H.; Lin, Z. Y. Enzyme-free multicolor biosensor based on Cu2+-modified carbon nitride nanosheets and gold nanobipyramids for sensitive detection of neuron specific enolase. Sens. Actuators B Chem. 2019, 283, 138–145.

    CAS  Google Scholar 

  138. Li, Y. B.; Li, M.; Lu, J.; Ma, B. K.; Wang, Z. P.; Cheong, L. Z.; Luo, K.; Zha, X.; Chen, K.; Persson, P. O. Å. et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1−x)C2 and its artificial enzyme behavior. ACS Nano 2019, 13, 9198–9205.

    CAS  Google Scholar 

  139. Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q., Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

    CAS  Google Scholar 

  140. Jiao, L.; Xu, W. Q.; Yan, H. Y.; Wu, Y.; Liu, C. R.; Du, D.; Lin, Y. H.; Zhu, C. Z. Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem. 2019, 91, 11994–11999.

    CAS  Google Scholar 

  141. Cheng, N.; Li, J. C.; Liu, D.; Lin, Y. H.; Du, D. Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 2019, 15, 1901485.

    CAS  Google Scholar 

  142. Huo, M. F.; Wang, L. Y.; Wang, Y. W.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019, 13, 2643–2653.

    CAS  Google Scholar 

  143. Huo, M. F.; Wang, L. Y.; Zhang, H. X.; Zhang, L. L.; Chen, Y.; Shi, J. L. Construction of single-iron-atom nanocatalysts for highly efficient catalytic antibiotics. Small 2019, 15, 1901834.

    Google Scholar 

  144. Xu, B. L.; Li, S. S.; Zheng, L. R.; Liu, Y. H.; Han, A. L.; Zhang, J.; Huang, Z. J.; Xie, H. J.; Fan, K. L.; Gao, L. Z. et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater. 2022, 34, e2107088.

    Google Scholar 

  145. Wang, X. W.; Shi, Q. Q.; Zha, Z.; Zhu, D. D.; Zheng, L. R.; Shi, L. X.; Wei, X. W.; Lian, L.; Wu, K. K.; Cheng, L. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 2021, 6, 4389–4401.

    CAS  Google Scholar 

  146. Chang, M. Y.; Hou, Z. Y.; Wang, M.; Yang, C. Z.; Wang, R. F.; Li, F.; Liu, D. L.; Peng, T. L.; Li, C. X.; Lin, J. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem., Int. Ed. 2021, 60, 12971–12979.

    CAS  Google Scholar 

  147. Zhu, D. M.; Chen, H.; Huang, C. Y.; Li, G. X.; Wang, X.; Jiang, W.; Fan, K. L. H2O2 self-producing single-atom nanozyme hydrogels as light-controlled oxidative stress amplifier for enhanced synergistic therapy by transforming “cold” tumors. Adv. Funct. Mater. 2022, 32, 2110268.

    CAS  Google Scholar 

  148. Yan, H. Y.; Jiao, L.; Wang, H. J.; Zhu, Y. M.; Chen, Y. F.; Shuai, L.; Gu, M.; Qiu, M.; Gu, W. L.; Zhu, C. Z. Single-atom Bi-anchored Au hydrogels with specifically boosted peroxidase-like activity for cascade catalysis and sensing. Sens. Actuators B Chem. 2021, 343, 130108.

    CAS  Google Scholar 

  149. Ma, C. B.; Xu, Y. P.; Wu, L. X.; Wang, Q.; Zheng, J. J.; Ren, G. X.; Wang, X. Y.; Gao, X. F.; Zhou, M.; Wang, M. et al. Guided synthesis of a Mo/Zn dual single-atom nanozyme with synergistic effect and peroxidase-like activity. Angew. Chem., Int. Ed. 2022, 61, e202116170.

    CAS  Google Scholar 

  150. Chen, Y.; Zou, H.; Yan, B.; Wu, X. J.; Cao, W. W.; Qian, Y. H.; Zheng, L.; Yang, G. W. Atomically dispersed Cu nanozyme with intensive ascorbate peroxidase mimic activity capable of alleviating ROS-mediated oxidation damage. Adv. Sci. 2022, 9, e2103977.

    Google Scholar 

  151. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    CAS  Google Scholar 

  152. Drummond, G. R.; Selemidis, S.; Griendling, K. K.; Sobey, C. G. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. Drug Discov. 2011, 10, 453–471.

    CAS  Google Scholar 

  153. Li, S. Q.; Hou, Y. J.; Chen, Q. M.; Zhang, X. D.; Cao, H. Y.; Huang, Y. M. Promoting active sites in MOF-derived homobimetallic hollow nanocages as a high-performance multifunctional nanozyme catalyst for biosensing and organic pollutant degradation. ACS Appl. Mater. Interfaces 2020, 12, 2581–2590.

    CAS  Google Scholar 

  154. Wang, Y.; Zhang, Z. W.; Jia, G. R.; Zheng, L. R.; Zhao, J. X.; Cui, X. Q. Elucidating the mechanism of the structure-dependent enzymatic activity of Fe-N/C oxidase mimics. Chem. Commun. 2019, 55, 5271–5274.

    CAS  Google Scholar 

  155. Wu, Y.; Jiao, L.; Luo, X.; Xu, W. Q.; Wei, X. Q.; Wang, H. J.; Yan, H. Y.; Gu, W. L.; Xu, B. Z.; Du, D. et al. Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity. Small 2019, 15, 1903108.

    CAS  Google Scholar 

  156. Chen, Q. M.; Li, S. Q.; Liu, Y.; Zhang, X. D.; Tang, Y.; Chai, H. X.; Huang, Y. M. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B Chem. 2020, 305, 127511.

    CAS  Google Scholar 

  157. Du, C.; Gao, Y. J.; Chen, H. Q.; Li, P.; Zhu, S. Y.; Wang, J. G.; He, Q. G.; Chen, W. A Cu and Fe dual-atom nanozyme mimicking cytochrome c oxidase to boost the oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 16994–17001.

    CAS  Google Scholar 

  158. Zhang, H.; Huang, L.; Chen, J. X.; Liu, L.; Zhu, X. Y.; Wu, W. W.; Dong, S. J. Bionic design of cytochrome c oxidase-like single-atom nanozymes for oxygen reduction reaction in enzymatic biofuel cells. Nano Energy 2021, 83, 105798.

    CAS  Google Scholar 

  159. Li, Z.; Liu, F. N.; Jiang, Y. Y.; Ni, P. J.; Zhang, C. H.; Wang, B.; Chen, C. X.; Lu, Y. Z. Single-atom Pd catalysts as oxidase mimics with maximum atom utilization for colorimetric analysis. Nano Res. 2022, 15, 4411–4420.

    CAS  Google Scholar 

  160. Kang, G.; Liu, W. D.; Liu, F. N.; Li, Z.; Dong, X. Y.; Chen, C. X.; Lu, Y. Z. Single-atom Pt catalysts as oxidase mimic for p-benzoquinone and α-glucosidase activity detection. Chem. Eng. J. 2022, 449, 137855.

    CAS  Google Scholar 

  161. Chong, Y.; Liu, Q.; Ge, C. C. Advances in oxidase-mimicking nanozymes: Classification, activity regulation, and biomedical applications. Nano Today 2021, 37, 101076.

    CAS  Google Scholar 

  162. Liu, Y. Q.; Mao, Y. Y.; Xu, E. Q.; Jia, H. M.; Zhang, S.; Dawson, V. L.; Dawson, T. M.; Li, Y. M.; Zheng, Z.; He, W. W. et al. Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in parkinson’s disease. Nano Today 2021, 36, 101027.

    CAS  Google Scholar 

  163. Tian, R. Z.; Ma, H. Y.; Ye, W.; Li, Y. J.; Wang, S. P.; Zhang, Z. R.; Liu, S. D.; Zang, M. S.; Hou, J. X.; Xu, J. Y. et al. Se-containing MOF coated dual-Fe-atom nanozymes with multi-enzyme cascade activities protect against cerebral ischemic reperfusion injury. Adv. Funct. Mater. 2022, 32, 2204025.

    CAS  Google Scholar 

  164. Liu, H. L.; Li, Y. H.; Sun, S.; Xin, Q.; Liu, S. H.; Mu, X. Y.; Yuan, X.; Chen, K.; Wang, H.; Varga, K. et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat. Commun. 2021, 12, 114.

    CAS  Google Scholar 

  165. Sun, S. F.; Liu, H. L.; Xin, Q.; Chen, K.; Ma, H.; Z. Liu, S. H.; Mu, X. Y.; Hao, W. T.; Liu, S. J.; Gao, Y. L. et al. Atomic engineering of clusterzyme for relieving acute neuroinflammation through lattice expansion. Nano Lett. 2021, 21, 2562–2571.

    CAS  Google Scholar 

  166. Zhang, S. F.; Li, Y. H.; Sun, S.; Liu, L.; Mu, X. Y.; Liu, S. H.; Jiao, M. L.; Chen, X. Z.; Chen, K.; Ma, H. Z. et al. Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma. Nat. Commun. 2022, 13, 4744.

    CAS  Google Scholar 

  167. Muhammad, P.; Hanif, S.; Li, J. Y.; Guller, A.; Rehman, F. U.; Ismail, M.; Zhang, D. Y.; Yan, X. Y.; Fan, K. K.; Shi, B. Y. Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today 2022, 45, 101530.

    CAS  Google Scholar 

  168. Jiao, L.; Xu, W. Q.; Wu, Y.; Yan, H. Y.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Single-atom catalysts boost signal amplification for biosensing. Chem. Soc. Rev. 2021, 50, 750–765.

    CAS  Google Scholar 

  169. Berke, J. D. What does dopamine mean? Nat. Neurosci. 2011, 31, 787–793.

    Google Scholar 

  170. Liu, X. X.; Liu, J. W. Biosensors and sensors for dopamine detection. View 2021, 3, 20200102.

    Google Scholar 

  171. Jackowska, K.; Krysinski, P. New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem. 2013, 405, 3753–3771.

    CAS  Google Scholar 

  172. Lei, Y.; Butler, D.; Lucking, M. C.; Zhang, F.; Xia, T. N.; Fujisawa, K.; Granzier-Nakajima, T.; Cruz-Silva, R.; Endo, M.; Terrones, H. et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. Sci. Adv. 2020, 6, eabc4250.

    CAS  Google Scholar 

  173. Xie, X. L.; Wang, D. P.; Guo, C. X.; Liu, Y. H.; Rao, Q. H.; Lou, F. M.; Li, Q. N.; Dong, Y. Q.; Li, Q. F.; Yang, H. B. et al. Single-atom ruthenium biomimetic enzyme for simultaneous electrochemical detection of dopamine and uric Acid. Anal. Chem. 2021, 93, 4916–4923.

    CAS  Google Scholar 

  174. Bushira, F. A.; Kitte, S. A.; Xu, C.; Li, H.; Zheng, L.; Wang, P.; Jin, Y. Two-dimensional-plasmon-boosted iron single-atom electrochemiluminescence for the ultrasensitive detection of dopamine, hemin, and mercury. Anal. Chem. 2021, 93, 9949–9957.

    CAS  Google Scholar 

  175. Liang, W. C.; Gao, M.; Li, Y. G.; Tong, Y. B.; Ye, B. C. Single-atom electrocatalysts templated by MOF for determination of levodopa. Talanta 2021, 225, 122042.

    CAS  Google Scholar 

  176. Zhang, Y. X.; Ren, B. P.; Zhang, D.; Liu, Y. L.; Zhang, M. Z.; Zhao, C.; Zheng, J. Design principles and fundamental understanding of biosensors for amyloid-β detection. J. Mater. Chem. B 2020, 8, 6179–6196.

    CAS  Google Scholar 

  177. Lyu, Z.; Ding, S. C.; Zhang, N.; Zhou, Y.; Cheng, N.; Wang, M. Y.; Xu, M. J.; Feng, Z. X.; Niu, X. H.; Cheng, Y. et al. Single-atom nanozymes linked immunosorbent assay for sensitive detection of Aβ 1–40: A biomarker of Alzheimer’s disease. Research 2020, 2020, 4724505.

    CAS  Google Scholar 

  178. Chen, W.; Cai, S.; Ren, Q. Q.; Wen, W.; Zhao, Y. D. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst 2012, 137, 49–58.

    CAS  Google Scholar 

  179. Gao, X. L.; Ma, W. J.; Mao, J. J.; He, C. T.; Ji, W. L.; Chen, Z.; Chen, W. X.; Wu, W. J.; Yu, P.; Mao, L. Q. A single-atom Cu-N2 catalyst eliminates oxygen interference for electrochemical sensing of hydrogen peroxide in a living animal brain. Chem. Sci. 2021, 12, 15045–15053.

    CAS  Google Scholar 

  180. Shu, Y. J.; Li, Z. J.; Yang, Y.; Tan, J. W.; Liu, Z. Y.; Shi, Y. H.; Ye, C. X.; Gao, Q. S. Isolated cobalt atoms on N-doped carbon as nanozymes for hydrogen peroxide and dopamine detection. ACS Appl. Nano Mater. 2021, 4, 7954–7962.

    CAS  Google Scholar 

  181. Soreq, H.; Seidman, S. Acetylcholinesterase-new roles for an old actor. Nat. Rev. Neurosci. 2001, 3, 294–302.

    Google Scholar 

  182. Wang, M. K.; Liu, L.; Xie, X. L.; Zhou, X. B.; Lin, Z. H.; Su, X. G. Single-atom iron containing nanozyme with peroxidase-like activity and copper nanoclusters based ratio fluorescent strategy for acetylcholinesterase activity sensing. Sens. Actuators B Chem. 2020, 313, 128023.

    CAS  Google Scholar 

  183. Yan, B. S.; Wang, F. T.; He, S. J.; Liu, W. D.; Zhang, C. H.; Chen, C. X.; Lu, Y. Z. Peroxidase-like activity of Ru-N-C nanozymes in colorimetric assay of acetylcholinesterase activity. Anal. Chim. Acta 2022, 1191, 339362.

    CAS  Google Scholar 

  184. Ding, H. Z.; Wang, D.; Sadat, A.; Li, Z. Z.; Hu, X. L.; Xu, M. S.; de Morais, P. C.; Ge, B. H.; Sun, S.; Ge, J. C. et al. Single-atom gadolinium anchored on graphene quantum dots as a magnetic resonance signal amplifier. ACS Appl. Bio Mater. 2021, 4, 2798–2809.

    CAS  Google Scholar 

  185. Willke, P.; Yang, K.; Bae, Y.; Heinrich, A. J.; Lutz, C. P. Magnetic resonance imaging of single atoms on a surface. Nat. Phys. 2019, 15, 1005–1010.

    CAS  Google Scholar 

  186. Zhou, X.; Ke, M. K.; Huang, G. X.; Chen, C.; Chen, W. X.; Liang, K.; Qu, Y. T.; Yang, J.; Wang, Y.; Li, F. T. et al. Identification of Fenton-like active Cu sites by heteroatom modulation of electronic density. Proc. Natl. Acad. Sci. USA. 2022, 119, e2119492119.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Jacobs Fellowship from the University of California San Diego.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weichen Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W. Single-atom nanozymes towards central nervous system diseases. Nano Res. 16, 5121–5139 (2023). https://doi.org/10.1007/s12274-022-5104-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5104-x

Keywords

Navigation