Skip to main content
Log in

Triboelectric nanogenerators with a constant inherent capacitance design

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Triboelectric nanogenerators (TENGs) utilize the phenomena of contact electrification and electrostatic induction to harvest mechanical energy from the environment. A good match between the motion frequency and the circuit characteristic frequency is critical for the effective power generation of a TENG. However, most TENGs have a time-dependent inherent capacitance (TIC-TENG), which hinders an optimal design for efficient energy conversion. Here, we propose a novel structure of a TENG with a constant inherent capacitance (CIC-TENG) and a mathematical model is established to provide analytical expressions of key output parameters of the device, which gives numerical simulation results that are in good agreement with the experimentally obtained results. Figures of merit and an optimization strategy are also given as guidelines for the optimization of material selection, geometry design, etc. Furthermore, a disk-formed CIC-TENG (DCIC-TENG) with polarity-switched triboelectric pairs is constructed to harvest unidirectional mechanical energy continuously, achieving an output power density of 55 mW/m2. The effects of the motion frequency, the number of electrodes and triboelectric pairs on the charge transfer efficiency of the DCIC-TENG are assessed and a preferred design strategy is given. Finally, the CIC-TENG demonstrates approximately two-fold advantages in power transfer efficiency over the TIC-TENG, and a DCIC-TENG-based self-powered anemometer was fabricated to measure wind speed in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pan, S. H.; Zhang, Z. N. Fundamental theories and basic principles of triboelectric effect: A review. Friction 2019, 7, 2–17.

    Article  Google Scholar 

  2. Lowell, J.; Rose-Innes, A. C. Contact electrification. Adv. Phys. 1980, 29, 947–1023.

    Article  CAS  Google Scholar 

  3. Persson, B. N. J. Theory of rubber friction and contact mechanics. J. Chem. Phys. 2001, 115, 3840–3861.

    Article  CAS  Google Scholar 

  4. Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

    Article  Google Scholar 

  5. Wang, Y.; Yang, Y.; Wang, Z. L. Triboelectric nanogenerators as flexible power sources. npj Flex. Electron. 2017, 1, 10.

    Article  Google Scholar 

  6. Ryu, H.; Park, H. M.; Kim, M. K.; Kim, B.; Myoung, H. S.; Kim, T. Y.; Yoon, H. J.; Kwak, S. S.; Kim, J.; Hwang, T. H. et al. Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat. Commun. 2021, 12, 4374.

    Article  CAS  Google Scholar 

  7. Alagumalai, A.; Shou, W.; Mahian, O.; Aghbashlo, M.; Tabatabaei, M.; Wongwises, S.; Liu, Y.; Zhan, J.; Torralba, A.; Chen, J. et al. Self-powered sensing systems with learning capability. Joule 2022, 6, 1475–1500.

    Article  CAS  Google Scholar 

  8. Libanori, A.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156.

    Article  CAS  Google Scholar 

  9. Zhang, S. L.; Bick, M.; Xiao, X.; Chen, G. R.; Nashalian, A.; Chen, J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887.

    Article  CAS  Google Scholar 

  10. Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2021, 171, 112714.

    Article  CAS  Google Scholar 

  11. Chen, G. R.; Xiao, X.; Zhao, X.; Tat, T.; Bick, M.; Chen, J. Electronic textiles for wearable point-of-care systems. Chem. Rev. 2022, 122, 3259–3291.

    Article  CAS  Google Scholar 

  12. Zu, L. L.; Liu, D.; Shao, J. J.; Liu, Y.; Shu, S.; Li, C. Y.; Shi, X.; Chen, B. D.; Wang, Z. L. A self-powered early warning glove with integrated elastic-arched triboelectric nanogenerator and flexible printed circuit for real-time safety protection. Adv. Mater. Technol. 2022, 7, 2100787.

    Article  CAS  Google Scholar 

  13. Jin, T.; Sun, Z. D.; Li, L.; Zhang, Q.; Zhu, M. L.; Zhang, Z. X.; Yuan, G. J.; Chen, T.; Tian, Y. Z.; Hou, X. Y. et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 5381.

    Article  CAS  Google Scholar 

  14. Yu, J. R.; Gao, G. Y.; Huang, J. R.; Yang, X. X.; Han, J.; Zhang, H.; Chen, Y. H.; Zhao, C. L.; Sun, Q. J.; Wang, Z. L. Contact-electrification-activated artificial afferents at femtojoule energy. Nat. Commun. 2021, 12, 1581.

    Article  CAS  Google Scholar 

  15. Kaponig, M.; Mölleken, A.; Nienhaus, H.; Möller, R. Dynamics of contact electrification. Sci. Adv. 2021, 7, eabg7595.

    Article  Google Scholar 

  16. Cui, X.; Zhang, Y. M.; Hu, G. W.; Zhang, L.; Zhang, Y. Dynamical charge transfer model for high surface charge density triboelectric nanogenerators. Nano Energy 2020, 70, 104513.

    Article  CAS  Google Scholar 

  17. Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

    Article  Google Scholar 

  18. Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.

    Article  CAS  Google Scholar 

  19. Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

    Article  CAS  Google Scholar 

  20. Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

    Article  CAS  Google Scholar 

  21. Niu, S. M.; Liu, Y.; Chen, X. Y.; Wang, S. H.; Zhou, Y. S.; Lin, L.; Xie, Y. N.; Wang, Z. L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774.

    Article  CAS  Google Scholar 

  22. Tang, Q.; Guo, H. Y.; Yan, P.; Hu, C. G. Recent progresses on paper-based triboelectric nanogenerator for portable self-powered sensing systems. EcoMat. 2020, 2, e12060.

    Article  Google Scholar 

  23. Zhao, K.; Sun, W. R.; Zhang, X. T.; Meng, J. K.; Zhong, M.; Qiang, L.; Liu, M. J.; Gu, B. N.; Chung, C. C.; Liu, M. C. et al. High-performance and long-cycle life of triboelectric nanogenerator using PVC/MoS2 composite membranes for wind energy scavenging application. Nano Energy 2022, 91, 106649.

    Article  CAS  Google Scholar 

  24. Chen, A. H.; Zhang, C.; Zhu, G.; Wang, Z. L. Polymer materials for high-performance triboelectric nanogenerators. Adv. Sci. 2020, 7, 2000186.

    Article  CAS  Google Scholar 

  25. Seung, W.; Gupta, M. K.; Lee, K. Y.; Shin, K. S.; Lee, J. H.; Kim, T. Y.; Kim, S.; Lin, J. J.; Kim, J. H.; Kim, S. W. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 2015, 9, 3501–3509.

    Article  CAS  Google Scholar 

  26. Cheng, L.; Xu, Q.; Zheng, Y. B.; Jia, X. F.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773.

    Article  Google Scholar 

  27. Liu, W. L.; Wang, Z.; Wang, G.; Zeng, Q. X.; He, W. C.; Liu, L. Y.; Wang, X.; Xi, Y.; Guo, H. Y.; Hu, C. G. et al. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nat. Commun. 2020, 11, 1883.

    Article  CAS  Google Scholar 

  28. Wang, Z.; Liu, W. L.; He, W. C.; Guo, H. Y.; Long, L.; Xi, Y.; Wang, X.; Liu, A. P.; Hu, C. G. Ultrahigh electricity generation from low-frequency mechanical energy by efficient energy management. Joule 2021, 5, 441–455.

    Article  Google Scholar 

  29. Karami, A.; Galayko, D.; Basset, P. Series-parallel charge pump conditioning circuits for electrostatic kinetic energy harvesting. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 227–240.

    Article  Google Scholar 

  30. Peng, J.; Kang, S. D.; Snyder, G. J. Optimization principles and the figure of merit for triboelectric generators. Sci. Adv. 2017, 3, eaap8576.

    Article  Google Scholar 

  31. Zargari, S.; Rezania, A.; Koozehkanani, Z. D.; Veladi, H.; Sobhi, J.; Rosendahl, L. Effect of the inherent capacitance optimization on the output performance of triboelectric nanogenerators. Nano Energy 2022, 92, 106740.

    Article  CAS  Google Scholar 

  32. Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

    Article  CAS  Google Scholar 

  33. Lin, L.; Wang, S. H.; Niu, S. M.; Liu, C.; Xie, Y. N.; Wang, Z. L. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl. Mater. Interfaces 2014, 6, 3031–3038.

    Article  CAS  Google Scholar 

  34. Xie, Y. N.; Wang, S. H.; Niu, S. M.; Lin, L.; Jing, Q. S.; Yang, J.; Wu, Z. Y.; Wang, Z. L. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 2014, 26, 6599–6607.

    Article  CAS  Google Scholar 

  35. Wang, S. H.; Niu, S. M.; Yang, J.; Lin, L.; Wang, Z. L. Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS Nano 2014, 8, 12004–12013.

    Article  CAS  Google Scholar 

  36. Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61971012) and High-performance Computing Platform of Peking University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youfan Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, L., Xia, F., Zhang, P. et al. Triboelectric nanogenerators with a constant inherent capacitance design. Nano Res. 16, 4077–4084 (2023). https://doi.org/10.1007/s12274-022-5054-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5054-3

Keywords

Navigation