Skip to main content
Log in

Metal halide perovskite nanocrystals with enhanced photoluminescence and stability toward anti-counterfeiting high-performance flexible fibers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a new type of light-collecting and luminescent material, all-inorganic cesium lead halide CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (NCs) are expected to have a wide range of applications in the fields of photovoltaics, optoelectronics, and fluorescence anti-counterfeiting, etc. Therefore, improving the fluorescence performance and stability of CsPbX3 perovskite NCs to prompt their applications would promise both fundamental and practical significance for in-depth research in the field of halide perovskites. In this paper, we developed a modification strategy to introduce a halogen source, zinc bromide (ZnBr2) in hexane, to CsPbX3 perovskite that can be conducted under atmospheric conditions with reduced reaction cost and easier operation. The first work in this paper was to apply the modification strategy to CsPbI3 nanowires (NWs). Compared with the untreated NWs, the ZnBr2/hexane modified CsPbI3 NWs exhibited better fluorescence properties. Subsequently, based on the study of perovskite NWs, we investigated perovskite nanocrystal-CsPbI3 nanorods (NRs) with different morphologies and sizes. It was found that the luminescence properties of nanorods (NRs) were superior. Later, we infiltrated the modified NRs into the aramid/polyphenylene sulfide (ACFs/PPS) composite paper yielded from our previous work to study its fluorescence performance for anti-counterfeiting. Their luminescence properties under ultraviolet light irradiation enable better performance in fluorescence anti-counterfeiting. The ZnBr2/hexane modification strategy and the applications studied in this work will expand the scope of perovskite research, laying the foundation for the applications of fluorescent anti-counterfeiting, nano-photoelectric devices, and fluorescent composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng, J. P.; Li, J. L.; Yang, Z.; Wang, M. Q. All-inorganic lead halide perovskites: A promising choice for photovoltaics and detectors. J. Mater. Chem. C 2019, 7, 12415–12440.

    Article  CAS  Google Scholar 

  2. Murphy, C. J.; Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 2002, 14, 80–82.

    Article  CAS  Google Scholar 

  3. Di Stasio, F.; Christodoulou, S.; Huo, N. J.; Konstantatos, G. Near-unity photoluminescence quantum yield in CsPbBr3 nanocrystal solid-state films via postsynthesis treatment with lead bromide. Chem. Mater. 2017, 29, 7663–7667.

    Article  Google Scholar 

  4. Bohn, B. J.; Tong, Y.; Gramlich, M.; Lai, M. L.; Döblinger, M.; Wang, K.; Hoye, R. L. Z.; Müller-Buschbaum, P.; Stranks, S. D.; Urban, A. S. et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett. 2018, 18, 5231–5238.

    Article  CAS  Google Scholar 

  5. Yi, J.; Ge, X. Y.; Liu, E. X.; Cai, T.; Zhao, C. J.; Wen, S. C.; Sanabria, H.; Chen, O.; Rao, A. M.; Gao, J. B. The correlation between phase transition and photoluminescence properties of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. Nanoscale Adv. 2020, 2, 4390–4394.

    Article  CAS  Google Scholar 

  6. Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688–19695.

    Article  CAS  Google Scholar 

  7. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988.

    Article  CAS  Google Scholar 

  8. Ahmad, W.; Khan, J.; Niu, G. D.; Tang, J. Inorganic CsPbI3 perovskite-based solar cells: A choice for a tandem device. Sol. RRL 2017, 1, 1700048.

    Article  Google Scholar 

  9. Bush, K. A.; Palmstrom, A. F.; Yu, Z. J.; Boccard, M.; Cheacharoen, R.; Mailoa, J. P.; McMeekin, D. P.; Hoye, R. L. Z.; Bailie, C. D.; Leijtens, T. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2017, 2, 17009.

    Article  CAS  Google Scholar 

  10. Zhao, D. W.; Yu, Y.; Wang, C. L.; Liao, W. Q.; Shrestha, N.; Grice, C. R.; Cimaroli, A. J.; Guan, L.; Ellingson, R. J.; Zhu, K. et al. Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2017, 2, 17018.

    Article  CAS  Google Scholar 

  11. Eperon, G. E.; Leijtens, T.; Bush, K. A.; Prasanna, R.; Green, T.; Wang, J. T. W.; Mcmeekin, D. P.; Volonakis, G.; Milot, R. L.; May, R. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 2016, 354, 861–865.

    Article  CAS  Google Scholar 

  12. Liu, S. J.; He, M. L.; Di, X. X.; Li, P. Z.; Xiang, W. D.; Liang, X. J. CsPbX3 nanocrystals films coated on YAG: Ce3+ PiG for warm white lighting source. Chem. Eng. J. 2017, 330, 823–830.

    Article  CAS  Google Scholar 

  13. Murtaza, G.; Ahmad, I. First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M=Cl, Br, I). Phys. B:Condens. Matter 2011, 406, 3222–3229.

    Article  CAS  Google Scholar 

  14. Ramasamy, P.; Lim, D. H.; Kim, B.; Lee, S. H.; Lee, M. S.; Lee, J. S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067–2070.

    Article  CAS  Google Scholar 

  15. Yantara, N.; Bhaumik, S.; Yan, F.; Sabba, D.; Dewi, H. A.; Mathews, N.; Boix, P. P.; Demir, H. V.; Mhaisalkar, S. Inorganic halide perovskites for efficient light-emitting diodes. J. Phys. Chem. Lett. 2015, 6, 4360–4364.

    Article  CAS  Google Scholar 

  16. Lin, K. B.; Xing, J.; Quan, L. N.; De Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 2018, 562, 245–248.

    Article  CAS  Google Scholar 

  17. Bao, C. X.; Yang, J.; Bai, S.; Xu, W. D.; Yan, Z. B.; Xu, Q. Y.; Liu, J. M.; Zhang, W. J.; Gao, F. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 2018, 30, 1803422.

    Article  Google Scholar 

  18. Lou, S. Q.; Si, S. C.; Huang, L.; Gan, W. J.; Lan, B.; Zhang, J. H.; Li, M. R.; Xuan, T. T.; Wang, J. In-situ synthesis of highly stable CsPbBr3/PbBrF composite nanocrystals induced by hydrofluoric acid. Chem. Eng. J. 2022, 430, 132680.

    Article  CAS  Google Scholar 

  19. Seth, S.; Ahmed, T.; De, A.; Samanta, A. Tackling the defects, stability, and photoluminescence of CsPbX3 perovskite nanocrystals. ACS Energy Lett. 2019, 4, 1610–1618.

    Article  CAS  Google Scholar 

  20. Grandhi, G. K.; Mokurala, K.; Han, J. H.; Cho, H. B.; Han, J. Y.; Im, W. B. Recent advances and challenges in obtaining stable CsPbX3 (X = Cl, Br, and I) nanocrystals toward white light-emitting applications. ECS J. Solid State Sci. Technol. 2021, 10, 106001.

    Article  CAS  Google Scholar 

  21. Liu, P. Z.; Chen, W.; Wang, W. G.; Xu, B.; Wu, D.; Hao, J. J.; Cao, W. Y.; Fang, F.; Li, Y.; Zeng, Y. Y. et al. Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance. Chem. Mater. 2017, 29, 5168–5173.

    Article  CAS  Google Scholar 

  22. Woo, J. Y.; Kim, Y.; Bae, J.; Kim, T. G.; Kim, J. W.; Lee, D. C.; Jeong, S. Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation. Chem. Mater. 2017, 29, 7088–7092.

    Article  CAS  Google Scholar 

  23. Li, F.; Liu, Y.; Wang, H. L.; Zhan, Q.; Liu, Q. L.; Xia, Z. G. Postsynthetic surface trap removal of CsPbX3 (X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chem. Mater. 2018, 30, 8546–8554.

    Article  CAS  Google Scholar 

  24. Jia, Y. H.; Wang, H. C.; Yan, Z. R.; Deng, L.; Dong, H.; Ma, N.; Sun, D. B. A facile method for the synthesis of CuInS2-ZnS quantum dots with tunable photoluminescent properties. RSC Adv. 2016, 6, 93303–93308.

    Article  CAS  Google Scholar 

  25. Imran, M.; Caligiuri, V.; Wang, M. J.; Goldoni, L.; Prato, M.; Krahne, R.; De Trizio, L.; Manna, L. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 2018, 140, 2656–2664.

    Article  CAS  Google Scholar 

  26. Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

    Article  CAS  Google Scholar 

  27. Zhang, Y.; Lu, D.; Gao, M. Y.; Lai, M. L.; Lin, J.; Lei, T.; Lin, Z. N.; Quan, L. N.; Yang, P. D. Quantitative imaging of anion exchange kinetics in halide perovskites. Proc. Natl. Acad. Sci. USA 2019, 116, 12648–12653.

    Article  CAS  Google Scholar 

  28. Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

    Article  CAS  Google Scholar 

  29. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  CAS  Google Scholar 

  30. Guhrenz, C.; Benad, A.; Ziegler, C.; Haubold, D.; Gaponik, N.; Eychmüller, A. Solid-state anion exchange reactions for color tuning of CsPbX3 perovskite nanocrystals. Chem. Mater. 2016, 28, 9033–9040.

    Article  CAS  Google Scholar 

  31. Fang, S. F.; Li, G. S.; Lu, Y. Y.; Li, L. P. Highly luminescent CsPbX3 (X=Cl, Br, I) nanocrystals achieved by a rapid anion exchange at room temperature. Chem. -Eur. J. 2018, 24, 1898–1904.

    Article  CAS  Google Scholar 

  32. Liu, H. W.; Liu, Z. Y.; Xu, W. Z.; Yang, L. T.; Liu, Y.; Yao, D.; Zhang, D. Q.; Zhang, H.; Yang, B. Engineering the photoluminescence of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals across the full visible spectra with the interval of 1 nm. ACS Appl. Mater. Interfaces 2019, 11, 14256–14265.

    Article  CAS  Google Scholar 

  33. Dou, L. T.; Lai, M. L.; Kley, C. S.; Yang, Y. M.; Bischak, C. G.; Zhang, D. D.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Spatially resolved multicolor CsPbX3 nanowire heterojunctions via anion exchange. Proc. Natl. Acad. Sci. USA 2017, 114, 7216–7221.

    Article  CAS  Google Scholar 

  34. Chen, Y. C.; Chou, H. L.; Lin, J. C.; Lee, Y. C.; Pao, C. W.; Chen, J. L.; Chang, C. C.; Chi, R. Y.; Kuo, T. R.; Lu, C. W. et al. Enhanced luminescence and stability of cesium lead halide perovskite CsPbX3 nanocrystals by Cu2+-assisted anion exchange reactions. J. Phys. Chem. C 2019, 123, 2353–2360.

    Article  CAS  Google Scholar 

  35. Lai, M. L.; Kong, Q.; Bischak, C. G.; Yu, Y.; Dou, L. T.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 2017, 10, 1107–1114.

    Article  CAS  Google Scholar 

  36. Huang, S. Q.; Lin, P. L.; Yao, S. J.; Wu, M. Y.; Zhu, Z. M.; Wang, L. X.; Wang, H. High-performance para-aramid paper strengthened by ultrafine fiber pulp of polyphenylene sulfide. Compos. Sci. Technol. 2021, 216, 109073.

    Article  CAS  Google Scholar 

  37. Chen, G. W.; Mohanty, A. K.; Misra, M. Progress in research and applications of polyphenylene sulfide blends and composites with carbons. Compos. Part B:Eng. 2021, 209, 108553.

    Article  CAS  Google Scholar 

  38. Huang, S. Q.; Lin, P. L.; Huang, H.; Zhao, L.; Zhu, C. Q.; Yu, Y.; Zhu, Z. M.; Nie, K.; Tang, Q. Q.; Wang, L. X. et al. Tailored polyphenylene sulfite composite with desirable mechanical performance and low dielectric constant by constructing a controllable aramid fiber network. Compos. Part B:Eng. 2020, 201, 108334.

    Article  CAS  Google Scholar 

  39. Kumar, P.; Creason, T. D.; Fattal, H.; Sharma, M.; Du, M. H.; Saparov, B. Composition-dependent photoluminescence properties and anti-counterfeiting applications of A2AgX3 (A = Rb, Cs; X = Cl, Br, I). Adv. Funct. Mater. 2021, 31, 2104941.

    Article  CAS  Google Scholar 

  40. Yu, X. Y.; Wu, L. Z.; Yang, D.; Cao, M. H.; Fan, X.; Lin, H. P.; Zhong, Q. X.; Xu, Y.; Zhang, Q. Hydrochromic CsPbBr3 nanocrystals for anti-counterfeiting. Angew. Chem., Int. Ed. 2020, 59, 14527–14532.

    Article  CAS  Google Scholar 

  41. Wei, J. H.; Liao, J. F.; Zhou, L.; Luo, J. B.; Wang, X. D.; Kuang, D. B. Indium-antimony-halide single crystals for high-efficiency white-light emission and anti-counterfeiting. Sci. Adv. 2021, 7, eabg3989.

    Article  CAS  Google Scholar 

  42. Feng, Q.; Xie, Z. G.; Zheng, M. Colour-tunable ultralong-lifetime room temperature phosphorescence with external heavy-atom effect in boron-doped carbon dots. Chem. Eng. J. 2021, 420, 127647.

    Article  CAS  Google Scholar 

  43. Kumar, P.; Dwivedi, J.; Gupta, B. K. Highly luminescent dual mode rare-earth nanorod assisted multi-stage excitable security ink for anti-counterfeiting applications. J. Mater. Chem. C 2014, 2, 10468–10475.

    Article  CAS  Google Scholar 

  44. Wang, Y. M.; Yan, Y. C.; Li, D.; Zhao, W. B.; Chen, S. H.; Zhong, Q. X.; Liu, J.; Diarra, F.; Cao, M. H.; Zhang, Q. Reversible transformation of all-inorganic copper halide perovskite nanocrystals for anti-counterfeiting. Dalton Trans. 2021, 50, 12826–12830.

    Article  CAS  Google Scholar 

  45. Campos-Cuerva, C.; Zieba, M.; Sebastian, V.; Martinez, G.; Sese, J.; Irusta, S.; Contamina, V.; Arruebo, M.; Santamaria, J. Screen-printed nanoparticles as anti-counterfeiting tags. Nanotechnology 2016, 27, 095702.

    Article  Google Scholar 

  46. Kumar, P.; Nagpal, K.; Gupta, B. K. Unclonable security codes designed from multicolor luminescent lanthanide-doped Y2O3 nanorods for anticounterfeiting. ACS Appl. Mater. Interfaces 2017, 9, 14301–14308.

    Article  CAS  Google Scholar 

  47. Dong, B.; Yuan, Y. J.; Ding, M. Y.; Bai, W. F.; Wu, S. T.; Ji, Z. G. Efficient dual-mode luminescence from lanthanide-doped core-shell nanoarchitecture for anti-counterfeiting applications. Nanotechnology 2020, 31, 365705.

    Article  CAS  Google Scholar 

  48. Zhou, R. R.; Cheng, C. A.; Qiu, S. Y.; Chen, J. Y.; Nie, K.; Wu, M. Y.; Lin, P. L.; Wang, H.; Wang, L. X.; Mei, L. F. A novel and facile synthesis strategy for highly stable cesium lead halide nanowires. RSC Adv. 2021, 11, 28716–28722.

    Article  CAS  Google Scholar 

  49. Hu, Y. Q.; Bai, F.; Liu, X. B.; Ji, Q. M.; Miao, X. L.; Qiu, T.; Zhang, S. F. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett. 2017, 2, 2219–2227.

    Article  CAS  Google Scholar 

  50. Zhang, X.; Li, X. M.; Gao, W. G.; Luo, S. J.; Su, S. D.; Huang, R.; Luo, M. Bimetallic CeZr5-UiO-66 as a highly efficient photocatalyst for the nitrogen reduction reaction. Sustainable Energy Fuels 2021, 5, 4053–4059.

    Article  CAS  Google Scholar 

  51. Bao, X. Y.; Li, M. Z.; Zhao, J.; Xia, Z. G. The postsynthetic anion exchange of CsPbI3 nanocrystals for photoluminescence tuning and enhanced quantum efficiency. J. Mater. Chem. C 2020, 8, 12302–12307.

    Article  Google Scholar 

  52. Wang, S. X.; Bi, C. H.; Yuan, J. F.; Zhang, L. X.; Tian, J. J. Original core-shell structure of cubic CsPbBr3@amorphous CsPbBrx perovskite quantum dots with a high blue photoluminescence quantum yield of over 80%. ACS Energy Lett. 2018, 3, 245–251.

    Article  CAS  Google Scholar 

  53. Ding, L.; Shen, C. Y.; Zhao, Y.; Chen, Y.; Yuan, L.; Yang, H. S.; Liang, X. J.; Xiang, W. D.; Li, L. CsPbBr3 nanocrystals glass facilitated with Zn ions for photocatalytic hydrogen production via H2O splitting. Mol. Catal. 2020, 483, 110764.

    Article  CAS  Google Scholar 

  54. Nikl, M.; Nitsch, K.; Somma, F.; Fabeni, P.; Pazzi, G. P.; Feng, X. Q. Luminescence of ternary nanoaggregates in CsI-PbI2 thin films. J. Lumin. 2000, 87–89, 372–374.

    Article  Google Scholar 

  55. Wang, S. Y.; Sun, Q.; Devakumar, B.; Liang, J.; Sun, L. L.; Huang, X. Y. Novel highly efficient and thermally stable Ca2GdTaO6: Eu3+ red-emitting phosphors with high color purity for UV/blue-excited WLEDs. J. Alloys Compd. 2019, 804, 93–99.

    Article  CAS  Google Scholar 

  56. Nie, K.; Ma, X. X.; Lin, P. L.; Kumar, N.; Wang, L. X.; Mei, L. F. Synthesis and luminescence properties of apatite-type red-emitting Ba2La8(GeO4)6O2: Eu3+ phosphors. J. Rare Earth. 2021, 39, 1320–1326.

    Article  CAS  Google Scholar 

  57. Zhou, Y. J.; Pan, A. Z.; Shi, C. Y.; Ma, X. Q.; Jia, M. J.; Huang, H.; Ren, D. Z.; He, L. Superhydrophobic luminous nanocomposites from CsPbX3 perovskite nanocrystals encapsulated in organosilica. Appl. Surf. Sci. 2020, 515, 146004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology (TTREP2022YB04), the National Natural Science Foundation of China (Nos. 51872269 and 52078394), the Science and Technology Research Project of Hubei Provincial Department of Education (B2021091), Key Laboratory for New Textile Materials and Applications of Hubei Province, Wuhan Textile University (FZXCL202107), the Open Project Program of High-Tech Organic Fibers Key Laboratory of Sichuan Province, China and National Project Cultivation Plan of Wuhan Textile University. This work was supported by the Graduate Innovation Fund Project of Wuhan Textile University. The authors would like to thank Liu Nian and Liu Tianying from Shiyanjia Lab (https://www.shiyanjia.com) for the XPS, SEM and TEM characterizations. We sincerely thank Professor Zhiguo Xia of South China University of Technology for polishing and guiding this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Nie, Luoxin Wang or Xiaoxue Ma.

Electronic Supplementary Material

12274_2022_5041_MOESM1_ESM.pdf

Metal halide perovskite nanocrystals with enhanced photoluminescence and stability toward anti-counterfeiting high-performance flexible fibers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Cheng, CA., Wang, X. et al. Metal halide perovskite nanocrystals with enhanced photoluminescence and stability toward anti-counterfeiting high-performance flexible fibers. Nano Res. 16, 3542–3551 (2023). https://doi.org/10.1007/s12274-022-5041-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5041-8

Keywords

Navigation