Skip to main content
Log in

Active cation-integration high-entropy Prussian blue analogues cathodes for efficient Zn storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Mn-based Prussian blue analogues (Mn-PBAs), featuring a three-dimensional (3D) metal-organic framework and multiple redox couples, have gained wide interests in Zn-ion batteries (ZIBs). However, owing to the Jahn-Teller distortion and disproportionation reaction of Mn3+, these materials suffer from poor electrochemical performances and inferior structural stability. Herein, we prepare a typical high-entropy Prussian blue analogue (HE-PBA) with increased configuration entropy through integrating five transition metal elements of Mn, Co, Ni, Fe and Cu into the nitrogen-coordinated -M- lattice sites. Consequently, the HE-PBA presents enhanced uptake of Zn2+ with 80 mAh·g−1 compared to those medium-entropy PBAs, low-entropy PBAs and conventional PBAs, which can be assigned to “cocktail” effect of multiple transition metal active redox couples. Furthermore, a phase transition process from monoclinic phase to rhombohedral phase occurs in HE-PBA cathode, resulting in a stable structure of MN6 (M = Mn, Co, Fe, Ni, Cu) and ZnN4 co-linked to FeC6 through the cyanide ligands. Additionally, the advantages of entropy-driven stability are also confirmed by the calculated reduction energy and the density of states between HE-PBA and KMn[Fe(CN)6] (KMnHCF). This work not only presents a high-performance HE-PBA cathode in ZIBs, but also introduces a novel concept of high entropy benefiting for designing advanced materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, L. S.; Li, D.; Pollard, T.; Deng, T.; Zhang, B.; Yang, C. Y.; Chen, L.; Vatamanu, J.; Hu, E. Y.; Hourwitz, M. J. et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 2021, 16, 902–910.

    Article  CAS  Google Scholar 

  2. Liang, Y. L.; Dong, H.; Aurbach, D.; Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 2020, 5, 646–656.

    Article  CAS  Google Scholar 

  3. Zhang, Q.; Luan, J. Y.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 13180–13191.

    Article  CAS  Google Scholar 

  4. Huang, J. T.; Zhou, J.; Liang, S. Q. Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery Cathodes. Acta Phys. Chim. Sin. 2021, 37, 27–49.

    Google Scholar 

  5. He, Y. N.; Xu, Y. F.; Zhang, M.; Xu, J. Z.; Chen, B. B.; Zhang, Y. X.; Bao, J. C.; Zhou, X. S. Confining ultrafine SnS nanoparticles in hollow multichannel carbon nanofibers for boosting potassium storage properties. Sci. Bull. 2022, 67, 151–160.

    Article  CAS  Google Scholar 

  6. Liao, J. Y.; Chen, C. L.; Hu, Q.; Du, Y. C.; He, Y. N.; Xu, Y. F.; Zhang, Z. Z.; Zhou, X. S. A low-strain phosphate cathode for high-rate and ultralong cycle-life potassium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 25575–25582.

    Article  CAS  Google Scholar 

  7. Gao, W. L.; Michalicka, J.; Pumera, M. Hierarchical atomic layer deposited V2O5 on 3D printed nanocarbon electrodes for high-performance aqueous zinc-ion batteries. Small 2022, 18, 2105572.

    Article  CAS  Google Scholar 

  8. Tian, Y. P.; Ju, M. M.; Bin, X. Q.; Luo, Y. J.; Que, W. X. Long cycle life aqueous rechargeable battery Zn/Vanadium hexacyanoferrate with H+Zn2+ coinsertion for high capacity. Chem. Eng. J. 2022, 430, 132964.

    Article  Google Scholar 

  9. Cao, T.; Zhang, F.; Chen, M. J.; Shao, T.; Li, Z.; Xu, Q. J.; Cheng, D. H.; Liu, H. M.; Xia, Y. Y. Cubic manganese potassium hexacyanoferrate regulated by controlling of the water and defects as a high-capacity and stable cathode material for rechargeable aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 26924–26935.

    Article  CAS  Google Scholar 

  10. Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.

    Article  CAS  Google Scholar 

  11. Liao, Y. X.; Chen, H. C.; Yang, C.; Liu, R.; Peng, Z. W.; Cao, H. J.; Wang, K. K. Unveiling performance evolution mechanisms of MnO2 polymorphs for durable aqueous zinc-ion batteries. Energy Stor. Mater. 2022, 44, 508–516.

    Google Scholar 

  12. Jin, Y.; Zou, L. F.; Liu, L. L.; Engelhard, M. H.; Patel, R. L.; Nie, Z. M.; Han, K. S.; Shao, Y. Y.; Wang, C. M.; Zhu, J. et al. Joint charge storage for high-rate aqueous zinc-manganese dioxide batteries. Adv. Mater. 2019, 31, 1900567.

    Article  Google Scholar 

  13. Zhong, C.; Liu, B.; Ding, J.; Liu, X. R.; Zhong, Y. W.; Li, Y.; Sun, C. B.; Han, X. P.; Deng, Y. D.; Zhao, N. Q. et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat. Energy 2020, 5, 440–449.

    Article  CAS  Google Scholar 

  14. Zhang, Y. R.; Chen, A. B.; Sun, J. Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 655–667.

    Article  CAS  Google Scholar 

  15. Wan, F.; Niu, Z. Q. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 16358–16367.

    Article  Google Scholar 

  16. Feng, Z. Y.; Sun, J. J.; Liu, Y. Y.; Jiang, H. M.; Cui, M.; Hu, T.; Meng, C. G.; Zhang, Y. F. Engineering interlayer space of vanadium oxide by pyridinesulfonic acid-assisted intercalation of polypyrrole enables enhanced aqueous zinc-ion storage. ACS Appl. Mater. Interfaces 2021, 13, 61154–61165.

    Article  CAS  Google Scholar 

  17. Li, W. J.; Han, C.; Cheng, G.; Chou, S. L.; Liu, H. K.; Dou, S. X. Chemical properties, structural properties, and energy storage applications of prussian blue analogues. Small 2019, 15, 1900470.

    Article  Google Scholar 

  18. Shi, Y. C.; Chen, Y.; Shi, L.; Wang, K.; Wang, B.; Li, L.; Ma, Y. M.; Li, Y. H.; Sun, Z. H.; Ali, W. et al. An overview and future perspectives of rechargeable zinc batteries. Small 2020, 16, 2000730.

    Article  CAS  Google Scholar 

  19. Liu, H. Y.; Wang, J. G.; You, Z. Y.; Wei, C. G.; Kang, F. Y.; Wei, B. Q. Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives. Mater. Today 2021, 42, 73–98.

    Article  Google Scholar 

  20. Yi, H. C.; Qin, R. Z.; Ding, S. X.; Wang, Y. T.; Li, S. N.; Zhao, Q. H.; Pan, F. Structure and properties of prussian blue analogues in energy storage and conversion applications. Adv. Funct. Mater. 2021, 31, 2006970.

    Article  CAS  Google Scholar 

  21. Du, G. Y.; Pang, H. Recent advancements in Prussian blue analogues: Preparation and application in batteries. Energy Stor. Mater. 2021, 36, 387–408.

    Google Scholar 

  22. Xu, Y. F.; Du, Y. C.; Yi, Z. Y.; Zhang, Z. Z.; Lai, C. L.; Liao, J. Y.; Zhou, X. S. Coupling Co3[Co(CN)6]2 nanocubes with reduced graphene oxide for high-rate and long-cycle-life potassium storage. J. Energy Chem. 2021, 58, 593–601.

    Article  CAS  Google Scholar 

  23. Xu, J. Y.; Xu, Y. F.; Lai, C. L.; Xia, T. T.; Zhang, B. N.; Zhou, X. S. Challenges and perspectives of covalent organic frameworks for advanced alkali-metal ion batteries. Sci. China Chem. 2021, 64, 1267–1282.

    Article  CAS  Google Scholar 

  24. Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.

    Article  Google Scholar 

  25. Li, H. F.; Ma, L. T.; Han, C. P.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zhi, C. Y. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 2019, 62, 550–587.

    Article  Google Scholar 

  26. Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

    Article  CAS  Google Scholar 

  27. Zeng, Y. X.; Lu, X. F.; Zhang, S. L.; Luan, D. Y.; Li, S.; Lou, X. W. Construction of Co-Mn prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 22189–22194.

    Article  CAS  Google Scholar 

  28. Ma, Y. J.; Ma, Y.; Dreyer, S. L.; Wang, Q. S.; Wang, K.; Goonetilleke, D.; Omar, A.; Mikhailova, D.; Hahn, H.; Breitung, B. et al. High-entropy metal-organic frameworks for highly reversible sodium storage. Adv Mater 2021, 33, 2101342.

    Article  CAS  Google Scholar 

  29. George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.

    Article  CAS  Google Scholar 

  30. Xie, B. X.; Zuo, P. J.; Wang, L. G.; Wang, J. J.; Huo, H.; He, M. X.; Shu, J.; Li, H. F.; Lou, S. F.; Yin, G. P. Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. Nano Energy 2019, 61, 201–210.

    Article  CAS  Google Scholar 

  31. Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309.

    Article  CAS  Google Scholar 

  32. Wang, Q. S.; Sarkar, A.; Wang, D.; Velasco, L.; Azmi, R.; Bhattacharya, S. S.; Bergfeldt, T.; Düvel, A.; Heitjans, P.; Brezesinski, T. et al. Multi-anionic and -cationic compounds: New high entropy materials for advanced Li-ion batteries. Energy Environ. Sci. 2019, 12, 2433–2442.

    Article  CAS  Google Scholar 

  33. Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; De Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H. et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400.

    Article  Google Scholar 

  34. Ma, Y. J.; Ma, Y.; Wang, Q. S.; Schweidler, S.; Botros, M.; Fu, T. T.; Hahn, H.; Brezesinski, T.; Breitung, B. High-entropy energy materials: Challenges and new opportunities. Energy Environ. Sci. 2021, 14, 2883–2905.

    Article  Google Scholar 

  35. Zhao, C. L.; Ding, F. X.; Lu, Y. X.; Chen, L. Q.; Hu, Y. S. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 264–269.

    Article  CAS  Google Scholar 

  36. You, Y.; Wu, X. L.; Yin, Y. X.; Guo, Y. G. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1643–1647.

    Article  CAS  Google Scholar 

  37. Ji, Z.; Han, B.; Liang, H. T.; Zhou, C. G.; Gao, Q.; Xia, K. S.; Wu, J. P. On the Mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 33619–33625.

    Article  CAS  Google Scholar 

  38. Li, J. H.; He, L. Z.; Jiang, J. B.; Xu, Z. F.; Liu, M. Q.; Liu, X.; Tong, H. X.; Liu, Z.; Qian, D. Facile syntheses of bimetallic Prussian blue analogues (KxM[Fe(CN)6]•nH2O, M=Ni, Co, and Mn) for electrochemical determination of toxic 2-nitrophenol. Electrochim. Acta 2020, 353, 136579.

    Article  CAS  Google Scholar 

  39. Chong, S. K.; Yang, J.; Sun, L.; Guo, S. W.; Liu, Y. N.; Liu, H. K. Potassium nickel iron hexacyanoferrate as ultra-long-life cathode material for potassium-ion batteries with high energy density. ACS Nano 2020, 14, 9807–9818.

    Article  CAS  Google Scholar 

  40. Huang, Y. X.; Xie, M.; Wang, Z. H.; Jiang, Y.; Yao, Y.; Li, S. J.; Li, Z. H.; Li, L.; Wu, F.; Chen, R. J. A chemical precipitation method preparing hollow-core-shell heterostructures based on the prussian blue analogs as cathode for sodium-ion batteries. Small 2018, 14, 1801246.

    Article  Google Scholar 

  41. Zhao, C. X.; Liu, B.; Li, X. N.; Zhu, K. X.; Hu, R. S.; Ao, Z. M.; Wang, J. H. A Co-Fe Prussian blue analogue for efficient Fenton-like catalysis: The effect of high-spin cobalt. Chem. Commun. 2019, 55, 7151–7154.

    Article  CAS  Google Scholar 

  42. Bie, X. F.; Kubota, K.; Hosaka, T.; Chihara, K.; Komaba, S. Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries. J. Power Sources 2018, 378, 322–330.

    Article  CAS  Google Scholar 

  43. Li, Q.; Ma, K. X.; Yang, G. Z.; Wang, C. X. High-voltage non-aqueous Zn/K1.6Mn1.2Fe(CN)6 batteries with zero capacity loss in extremely long working duration. Energy Stor. Mater. 2020, 29, 246–253.

    Google Scholar 

  44. Xia, M. T.; Zhang, X. K.; Liu, T. T.; Yu, H. X.; Chen, S.; Peng, N.; Zheng, R. T.; Zhang, J. D.; Shu, J. Commercially available Prussian blue get energetic in aqueous K-ion batteries. Chem. Eng. J. 2020, 394, 124923.

    Article  CAS  Google Scholar 

  45. Ma, L. T.; Chen, S. M.; Long, C. B.; Li, X. L.; Zhao, Y. W.; Liu, Z. X.; Huang, Z. D.; Dong, B. B.; Zapien, J. A.; Zhi, C. Y. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 2019, 9, 1902446.

    Article  CAS  Google Scholar 

  46. Tao, Y. Y.; Li, Z.; Tang, L. B.; Pu, X. M.; Cao, T.; Cheng, D. H.; Xu, Q. J.; Liu, H. M.; Wang, Y. G.; Xia, Y. Y. Nickel and cobalt Co-substituted spinel ZnMn2O4@N-rGO for increased capacity and stability as a cathode material for rechargeable aqueous zinc-ion battery. Electrochim. Acta 2020, 331, 135296.

    Article  CAS  Google Scholar 

  47. Tang, Y.; Li, W.; Feng, P. Y.; Zhou, M.; Wang, K. L.; Wang, Y. S.; Zaghib, K.; Jiang, K. High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries. Adv. Funct. Mater. 2020, 30, 1908754.

    Article  CAS  Google Scholar 

  48. Gao, Y. N.; Yang, H. Y.; Wang, X. R.; Bai, Y.; Zhu, N.; Guo, S. N.; Suo, L. M.; Li, H.; Xu, H. J.; Wu, C. The compensation effect mechanism of Fe-Ni mixed prussian blue analogues in aqueous rechargeable aluminum-ion batteries. ChemSusChem 2020, 13, 732–740.

    Article  CAS  Google Scholar 

  49. Xu, Y.; Wan, J.; Huang, L.; Xu, J.; Ou, M. Y.; Liu, Y.; Sun, X. P.; Li, S.; Fang, C.; Li, Q. et al. Dual redox-active copper hexacyanoferrate nanosheets as cathode materials for advanced sodium-ion batteries. Energy Stor. Mater. 2020, 33, 432–441.

    Google Scholar 

  50. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  51. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  52. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  53. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  54. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the financial support received from the National Natural Science Foundation of China (Nos. 21908204, 52074244, 2022TQ0285 and 52206282) and the Center of Advanced Analysis & Computational Science, Zhengzhou University for their characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianzheng Jin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, J., Zhang, Y., Jin, Y. et al. Active cation-integration high-entropy Prussian blue analogues cathodes for efficient Zn storage. Nano Res. 16, 2486–2494 (2023). https://doi.org/10.1007/s12274-022-5020-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5020-0

Keywords

Navigation