Skip to main content
Log in

Defect engineering of two-dimensional materials towards next-generation electronics and optoelectronics

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The ultrathin body of two-dimensional (2D) materials provides potential for next-generation electronics and optoelectronics. The unavoidable atomic defects substantially determine the physical properties of atomic-level thin 2D materials, thus enabling new functionalities that are impossible in three-dimensional semiconductors. Therefore, rational design of atomic defects provides an alternative approach to modulate the physical properties of 2D materials. In this review, we summarize the recent progress of defect engineering in 2D materials, particularly in device performance enhancement. Firstly, the common defects in 2D materials and approaches for generating and repairing defects, including synthesis and post-growth treatments, are systematically introduced. The correlations between defects and optical, electronic, and magnetic properties of 2D materials are then highlighted. Subsequently, defect engineering for high performance electronics and optoelectronics is emphasized. At last, we provide our perspective on challenges and opportunities in defect engineering of 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

    Article  CAS  Google Scholar 

  2. Su, S. K.; Chuu, C. P.; Li, M. Y.; Cheng, C. C.; Wong, H. S. P.; Li, L. J. Layered semiconducting 2D materials for future transistor applications. Small Struct. 2021, 2, 2000103.

    Article  CAS  Google Scholar 

  3. Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

    Article  CAS  Google Scholar 

  4. Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238.

    Article  CAS  Google Scholar 

  5. Zhu, Y.; Sun, X. Q.; Tang, Y. L.; Fu, L.; Lu, Y. R. Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives. Nano Res. 2021, 14, 1912–1936.

    Article  CAS  Google Scholar 

  6. Bertolazzi, S.; Bondavalli, P.; Roche, S.; San, T.; Choi, S. Y.; Colombo, L.; Bonaccorso, F.; Samori, P. Nonvolatile memories based on graphene and related 2D materials. Adv. Mater. 2019, 31, 1806663.

    Article  Google Scholar 

  7. Rhodes, D.; Chae, S. H.; Ribeiro-Palau, R.; Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 2019, 18, 541–549.

    Article  CAS  Google Scholar 

  8. Shen, P. C.; Lin, Y. X.; Su, C.; McGahan, C.; Lu, A. Y.; Ji, X.; Wang, X. Z.; Wang, H. Z.; Mao, N. N.; Guo, Y. F. et al. Healing of donor defect states in monolayer molybdenum disulfide using oxygen-incorporated chemical vapour deposition. Nat. Electron. 2022, 5, 28–36.

    Article  CAS  Google Scholar 

  9. Lien, D. H.; Uddin, S. Z.; Yeh, M.; Amani, M.; Kim, H.; Ager III, J. W.; Yablonovitch, E.; Javey, A. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 2019, 364, 468–471.

    Article  CAS  Google Scholar 

  10. Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

    Article  Google Scholar 

  11. Liu, E. F.; Long, M. S.; Zeng, J. W.; Luo, W.; Wang, Y. J.; Pan, Y. M.; Zhou, W.; Wang, B. G.; Hu, W. D.; Ni, Z. H. et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv. Funct. Mater. 2016, 26, 1938–1944.

    Article  CAS  Google Scholar 

  12. Jiang, J.; Ling, C. Y.; Xu, T.; Wang, W. H.; Niu, X. H.; Zafar, A.; Yan, Z. Z.; Wang, X. M.; You, Y. M.; Sun, L. T. et al. Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater. 2018, 30, 1804332.

    Article  Google Scholar 

  13. Wang, Q. X.; Zhang, Q.; Zhao, X. X.; Luo, X.; Wong, C. P. Y.; Wang, J. Y.; Wan, D. Y.; Venkatesan, T.; Pennycook, S. J.; Loh, K. P. et al. Photoluminescence upconversion by defects in hexagonal boron nitride. Nano Lett. 2018, 18, 6898–6905.

    Article  CAS  Google Scholar 

  14. Mendelson, N.; Chugh, D.; Reimers, J. R.; Cheng, T. S.; Gottscholl, A.; Long, H.; Mellor, C. J.; Zettl, A.; Dyakonov, V.; Beton, P. H. et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 2021, 20, 321–328.

    Article  CAS  Google Scholar 

  15. Avsar, A.; Ciarrocchi, A.; Pizzochero, M.; Unuchek, D.; Yazyev, O. V.; Kis, A. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 2019, 14, 674–678.

    Article  CAS  Google Scholar 

  16. Zhang, X. K.; Gao, L.; Yu, H. H.; Liao, Q. L.; Kang, Z.; Zhang, Z.; Zhang, Y. Single-atom vacancy doping in two-dimensional transition metal dichalcogenides. Acc. Mater. Res. 2021, 2, 655–668.

    Article  CAS  Google Scholar 

  17. Liang, Q. J.; Zhang, Q.; Zhao, X. X.; Liu, M. Z.; Wee, A. T. S. Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano 2021, 15, 2165–2181.

    Article  CAS  Google Scholar 

  18. Jiang, J.; Xu, T.; Lu, J. P.; Sun, L. T.; Ni, Z. H. Defect engineering in 2D materials: Precise manipulation and improved functionalities. Research 2019, 2019, 4641739.

    Article  CAS  Google Scholar 

  19. Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

    Article  CAS  Google Scholar 

  20. Shi, Y. Y.; Liang, X. H.; Yuan, B.; Chen, V.; Li, H. T.; Hui, F.; Yu, Z. C. W.; Yuan, F.; Pop, E.; Wong, H. S. P. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 2018, 1, 458–465.

    Article  Google Scholar 

  21. Wu, X. H.; Ge, R. J.; Chen, P. A.; Chou, H.; Zhang, Z. P.; Zhang, Y. F.; Banerjee, S.; Chiang, M. H.; Lee, J. C.; Akinwande, D. Thinnest nonvolatile memory based on monolayer h-BN. Adv. Mater. 2019, 31, 1806790.

    Article  Google Scholar 

  22. Ge, R. J.; Wu, X. H.; Liang, L. B.; Hus, S. M.; Gu, Y. Q.; Okogbue, E.; Chou, H.; Shi, J. P.; Zhang, Y. F.; Banerjee, S. K. et al. A library of atomically thin 2D materials featuring the conductive-point resistive switching phenomenon. Adv. Mater. 2021, 33, 2007792.

    Article  CAS  Google Scholar 

  23. Yan, X. B.; Zhao, Q. L.; Chen, A. P.; Zhao, J. H.; Zhou, Z. Y.; Wang, J. J.; Wang, H.; Zhang, L.; Li, X. Y.; Xiao, Z. A. et al. Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small 2019, 15, 1901423.

    Article  Google Scholar 

  24. Hus, S. M.; Ge, R. J.; Chen, P. A.; Liang, L. B.; Donnelly, G. E.; Ko, W.; Huang, F. M.; Chiang, M. H.; Li, A. P.; Akinwande, D. Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol. 2021, 16, 58–62.

    Article  CAS  Google Scholar 

  25. Zhou, F. C.; Chen, J. W.; Tao, X. M.; Wang, X. R.; Chai, Y. 2D materials based optoelectronic memory: Convergence of electronic memory and optical sensor. Research 2019, 2019, 9490413.

    Article  CAS  Google Scholar 

  26. Yin, L.; He, P.; Cheng, R. Q.; Wang, F.; Wang, F. M.; Wang, Z. X.; Wen, Y.; He, J. Robust trap effect in transition metal dichalcogenides for advanced multifunctional devices. Nat. Commun. 2019, 10, 4133.

    Article  Google Scholar 

  27. Wang, Q. S.; Wen, Y.; Cai, K. M.; Cheng, R. Q.; Yin, L.; Zhang, Y.; Li, J.; Wang, Z. X.; Wang, F.; Wang, F. M. et al. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci. Adv. 2018, 4, eaap7916.

    Article  Google Scholar 

  28. Liao, F. Y.; Zhou, Z.; Kim, B. J.; Chen, J. W.; Wang, J. L.; Wan, T. Q.; Zhou, Y.; Hoang, A. T.; Wang, C.; Kang, J. F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 2022, 5, 84–91.

    Article  Google Scholar 

  29. Shen, Y. T.; Xu, T.; Tan, X. D.; He, L. B.; Yin, K. B.; Wan, N.; Sun, L. T. In situ repair of 2D chalcogenides under electron beam irradiation. Adv. Mater. 2018, 30, 1705954.

    Article  Google Scholar 

  30. Wang, M.; Cai, S. H.; Pan, C.; Wang, C. Y.; Lian, X. J.; Zhuo, Y.; Xu, K.; Cao, T. J.; Pan, X. Q.; Wang, B. G. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018, 1, 130–136.

    Article  CAS  Google Scholar 

  31. Schuler, B.; Cochrane, K. A.; Kastl, C.; Barnard, E. S.; Wong, E.; Borys, N. J.; Schwartzberg, A. M.; Ogletree, D. F.; De Abajo, F. J. G.; Weber-Bargioni, A. Electrically driven photon emission from individual atomic defects in monolayer WS2. Sci. Adv. 2020, 6, eabb5988.

    Article  CAS  Google Scholar 

  32. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    Article  CAS  Google Scholar 

  33. Shim, J.; Oh, A.; Kang, D. H.; Oh, S.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Kim, M.; Choi, C.; Lee, J. et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 2016, 28, 6985–6992.

    Article  CAS  Google Scholar 

  34. Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.

    Article  CAS  Google Scholar 

  35. Zhang, S.; Wang, C. G.; Li, M. Y.; Huang, D.; Li, L. J.; Ji, W.; Wu, S. W. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 2017, 119, 046101.

    Article  Google Scholar 

  36. Barja, S.; Refaely-Abramson, S.; Schuler, B.; Qiu, D. Y.; Pulkin, A.; Wickenburg, S.; Ryu, H.; Ugeda, M. M.; Kastl, C.; Chen, C. et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 2019, 10, 3382.

    Article  Google Scholar 

  37. Pető, J.; Ollár, T.; Vancsó, P.; Popov, Z. I.; Magda, G. Z.; Dobrik, G.; Hwang, C.; Sorokin, P. B.; Tapasztó, L. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. Nat. Chem. 2018, 10, 1246–1251.

    Article  Google Scholar 

  38. Nipane, A.; Karmakar, D.; Kaushik, N.; Karande, S.; Lodha, S. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 2016, 10, 2128–2137.

    Article  CAS  Google Scholar 

  39. Jiang, J. F.; Zhang, Q. H.; Wang, A. Z.; Zhang, Y.; Meng, F. Q.; Zhang, C. C.; Feng, X. J.; Feng, Y. P.; Gu, L.; Liu, H. et al. A facile and effective method for patching sulfur vacancies of WS2 via nitrogen plasma treatment. Small 2019, 15, 1901791.

    Article  Google Scholar 

  40. Susarla, S.; Kutana, A.; Hachtel, J. A.; Kochat, V.; Apte, A.; Vajtai, R.; Idrobo, J. C.; Yakobson, B. I.; Tiwary, C. S.; Ajayan, P. M. Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv. Mater. 2017, 29, 1702457.

    Article  Google Scholar 

  41. Duan, X. D.; Wang, C.; Fan, Z.; Hao, G. L.; Kou, L. Z.; Halim, U.; Li, H. L.; Wu, X. P.; Wang, Y. C.; Jiang, J. H. et al. Synthesis of WS2xSe2−2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 2016, 16, 264–269.

    Article  CAS  Google Scholar 

  42. Chen, Y. F.; Xi, J. Y.; Dumcenco, D. O.; Liu, Z.; Suenaga, K.; Wang, D.; Shuai, Z. G.; Huang, Y. S.; Xie, L. M. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 2013, 7, 4610–4616.

    Article  CAS  Google Scholar 

  43. Zhang, K. H.; Feng, S. M.; Wang, J. J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C. J.; Lerach, J.; Bojan, V. et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586–6591.

    Article  CAS  Google Scholar 

  44. Suh, J.; Tan, T. L.; Zhao, W. J.; Park, J.; Lin, D. Y.; Park, T. E.; Kim, J.; Jin, C. H.; Saigal, N.; Ghosh, S. et al. Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat. Commun. 2018, 9, 199.

    Article  Google Scholar 

  45. Bai, G. X.; Yuan, S. G.; Zhao, Y. D.; Yang, Z. B.; Choi, S. Y.; Chai, Y.; Yu, S. F.; Lau, S. P.; Hao, J. H. 2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence. Adv. Mater. 2016, 28, 7472–7477.

    Article  CAS  Google Scholar 

  46. Li, B.; Huang, L.; Zhong, M. Z.; Huo, N. J.; Li, Y. T.; Yang, S. X.; Fan, C.; Yang, J. H.; Hu, W. P.; Wei, Z. M. et al. Synthesis and transport properties of large-scale alloy Co0.16Mo0.84S2 bilayer nanosheets. ACS Nano 2015, 9, 1257–1262.

    Article  CAS  Google Scholar 

  47. Lin, Y. C.; Dumcenco, D. O.; Komsa, H. P.; Niimi, Y.; Krasheninnikov, A. V.; Huang, Y. S.; Suenaga, K. Properties of individual dopant atoms in single-layer MoS2: Atomic structure, migration, and enhanced reactivity. Adv. Mater. 2014, 26, 2857–2861.

    Article  CAS  Google Scholar 

  48. Zhang, X. K.; Liao, Q. L.; Liu, S.; Kang, Z.; Zhang, Z.; Du, J. L.; Li, F.; Zhang, S. H.; Xiao, J. K.; Liu, B. S. et al. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 2017, 8, 15881.

    Article  CAS  Google Scholar 

  49. Meyer, J. C.; Kisielowski, C.; Erni, R.; Rossell, M. D.; Crommie, M. F.; Zettl, A. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 2008, 8, 3582–3586.

    Article  CAS  Google Scholar 

  50. Komsa, H. P.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B 2013, 88, 035301.

    Article  Google Scholar 

  51. Van Der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  CAS  Google Scholar 

  52. Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

    Article  CAS  Google Scholar 

  53. Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

    Article  CAS  Google Scholar 

  54. Shi, Y. M.; Li, H. N.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 2015, 44, 2744–2756.

    Article  CAS  Google Scholar 

  55. Xu, T.; Yin, K. B.; Sun, L. T. In-situ study of electron irradiation on two-dimensional layered materials. Chin. Sci. Bull. 2017, 62, 2919–2930.

    Article  Google Scholar 

  56. Xu, T.; Zhou, Y. L.; Tan, X. D.; Yin, K. B.; He, L. B.; Banhart, F.; Sun, L. T. Creating the smallest BN nanotube from bilayer h-BN. Adv. Funct. Mater. 2017, 27, 1603897.

    Article  Google Scholar 

  57. Mitterreiter, E.; Schuler, B.; Cochrane, K. A.; Wurstbauer, U.; Weber-Bargioni, A.; Kastl, C.; Holleitner, A. W. Atomistic positioning of defects in helium ion treated single-layer MoS2. Nano Lett. 2020, 20, 4437–4444.

    Article  CAS  Google Scholar 

  58. Bertolazzi, S.; Bonacchi, S.; Nan, G. J.; Pershin, A.; Beljonne, D.; Samorì, P. Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv. Mater. 2017, 29, 1606760.

    Article  Google Scholar 

  59. Kretschmer, S.; Ghaderzadeh, S.; Facsko, S.; Krasheninnikov, A. V. Threshold ion energies for creating defects in 2D materials from first-principles calculations: Chemical interactions are important. J. Phys. Chem. Lett. 2022, 13, 514–519.

    Article  CAS  Google Scholar 

  60. Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738–5745.

    Article  CAS  Google Scholar 

  61. Tosun, M.; Chan, L.; Amani, M.; Roy, T.; Ahn, G. H.; Taheri, P.; Carraro, C.; Ager, J. W.; Maboudian, R.; Javey, A. Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano 2016, 10, 6853–6860.

    Article  CAS  Google Scholar 

  62. Li, Z. X.; Li, D. Y.; Wang, H. Y.; Xu, X.; Pi, L. J.; Chen, P.; Zhai, T. Y.; Zhou, X. Universal p-type doping via Lewis acid for 2D transition-metal dichalcogenides. ACS Nano 2022, 16, 4884–4891.

    Article  CAS  Google Scholar 

  63. Gao, L.; Liao, Q. L.; Zhang, X. K.; Liu, X. Z.; Gu, L.; Liu, B. S.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z. et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 2020, 32, 1906646.

    Article  CAS  Google Scholar 

  64. Enyashin, A. N.; Bar-Sadan, M.; Houben, L.; Seifert, G. Line defects in molybdenum disulfide layers. J. Phys. Chem. C 2013, 117, 10842–10848.

    Article  CAS  Google Scholar 

  65. Yang, P.; Shan, Y. B.; Chen, J.; Ekoya, G.; Han, J. K.; Qiu, Z. J.; Sun, J. J.; Chen, F.; Wang, H. M.; Bao, W. Z. et al. Remarkable quality improvement of as-grown monolayer MoS2 by sulfur vapor pretreatment of SiO2/Si substrates. Nanoscale 2020, 12, 1958–1966.

    Article  Google Scholar 

  66. Yang, P.; Zha, J. J.; Gao, G. Y.; Zheng, L.; Huang, H. X.; Xia, Y. P.; Xu, S. C.; Xiong, T. F.; Zhang, Z. M.; Yang, Z. B. et al. Growth of tellurium nanobelts on h-BN for p-type transistors with ultrahigh hole mobility. Nano-Micro Lett. 2022, 14, 109.

    Article  Google Scholar 

  67. Yang, P.; Yang, A. G.; Chen, L. X.; Chen, J.; Zhang, Y. W.; Wang, H. M.; Hu, L. G.; Zhang, R. J.; Liu, R.; Qu, X. P. et al. Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. Nano Res. 2019, 12, 823–827.

    Article  CAS  Google Scholar 

  68. Wu, K.; Li, Z.; Tang, J. B.; Lv, X. L.; Wang, H. L.; Luo, R. C.; Liu, P.; Qian, L. H.; Zhang, S. P.; Yuan, S. L. Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement. Nano Res. 2018, 11, 4123–4132.

    Article  CAS  Google Scholar 

  69. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    Article  CAS  Google Scholar 

  70. Walsh, L. A.; Hinkle, C. L. Van der Waals epitaxy: 2D materials and topological insulators. Appl. Mater. Today 2017, 9, 504–515.

    Article  Google Scholar 

  71. Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog. Mater. Sci. 2019, 106, 100573.

    Article  CAS  Google Scholar 

  72. Xie, Y.; Zhang, B.; Wang, S. X.; Wang, D.; Wang, A. Z.; Wang, Z. Y.; Yu, H. H.; Zhang, H. J.; Chen, Y. X.; Zhao, M. W. et al. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2,717 nm. Adv. Mater. 2017, 29, 1605972.

    Article  Google Scholar 

  73. Xie, Y.; Liang, F.; Wang, D.; Chi, S. M.; Yu, H. H.; Lin, Z. S.; Zhang, H. J.; Chen, Y. X.; Wang, J. Y.; Wu, Y. C. Room-temperature ultrabroadband photodetection with MoS2 by electronic-structure engineering strategy. Adv. Mater. 2018, 30, 1804858.

    Article  Google Scholar 

  74. Kotakoski, J.; Krasheninnikov, A. V.; Kaiser, U.; Meyer, J. C. From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 2011, 106, 105505.

    Article  CAS  Google Scholar 

  75. Wei, X. L.; Wang, M. S.; Bando, Y.; Golberg, D. Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 2011, 5, 2916–2922.

    Article  CAS  Google Scholar 

  76. Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396.

    Article  CAS  Google Scholar 

  77. Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.

    Article  Google Scholar 

  78. Hong, J. H.; Jin, C. H.; Yuan, J.; Zhang, Z. Atomic defects in two-dimensional materials: From single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 2017, 29, 1606434.

    Article  Google Scholar 

  79. Nan, H. Y.; Zhou, R. W.; Gu, X. F.; Xiao, S. Q.; Ostrikov, K. Recent advances in plasma modification of 2D transition metal dichalcogenides. Nanoscale 2019, 11, 19202–19213.

    Article  CAS  Google Scholar 

  80. Voiry, D.; Goswami, A.; Kappera, R.; Silva, C. D. C. C. E.; Kaplan, D.; Fujita, T.; Chen, M. W.; Asefa, T.; Chhowalla, M. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 2015, 7, 45–49.

    Article  CAS  Google Scholar 

  81. Zhu, H.; Wang, Q. X.; Cheng, L. X.; Addou, R.; Kim, J.; Kim, M. J.; Wallace, R. M. Defects and surface structural stability of MoTe2 under vacuum annealing. ACS Nano 2017, 11, 11005–11014.

    Article  CAS  Google Scholar 

  82. Chua, R.; Yang, J.; He, X. Y.; Yu, X. J.; Yu, W.; Bussolotti, F.; Wong, P. K. J.; Loh, K. P.; Breese, M. B. H.; Goh, K. E. J. et al. Can reconstructed se-deficient line defects in monolayer VSe2 induce magnetism? Adv. Mater. 2020, 32, 2000693.

    Article  CAS  Google Scholar 

  83. Chen, J.; Ryu, G. H.; Sinha, S.; Warner, J. H. Atomic structure and dynamics of defects and grain boundaries in 2D Pd2Se3 monolayers. ACS Nano 2019, 13, 8256–8264.

    Article  CAS  Google Scholar 

  84. Lu, J. P.; Carvalho, A.; Chan, X. K.; Liu, H. W.; Liu, B.; Tok, E. S.; Loh, K. P.; Neto, A. H. C.; Sow, C. H. Atomic healing of defects in transition metal dichalcogenides. Nano Lett. 2015, 15, 3524–3532.

    Article  CAS  Google Scholar 

  85. Liang, Q. J.; Zhang, Q.; Gou, J.; Song, T. T.; Arramel; Chen, H.; Yang, M.; Lim, S. X.; Wang, Q. X.; Zhu, R. et al. Performance improvement by ozone treatment of 2D PdSe2. ACS Nano 2020, 14, 5668–5677.

    Article  CAS  Google Scholar 

  86. Kirubasankar, B.; Won, Y. S.; Adofo, L. A.; Choi, S. H.; Kim, S. M.; Kim, K. K. Atomic and structural modifications of two-dimensional transition metal dichalcogenides for various advanced applications. Chem. Sci. 2022, 13, 7707–7738.

    Article  CAS  Google Scholar 

  87. Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

    Article  CAS  Google Scholar 

  88. Roy, S.; Choi, W.; Jeon, S.; Kim, D. H.; Kim, H.; Yun, S. J.; Lee, Y.; Lee, J.; Kim, Y. M.; Kim, J. Atomic observation of filling vacancies in monolayer transition metal sulfides by chemically sourced sulfur atoms. Nano Lett. 2018, 18, 4523–4530.

    Article  CAS  Google Scholar 

  89. Mahjouri-Samani, M.; Liang, L. B.; Oyedele, A.; Kim, Y. S.; Tian, M. K.; Cross, N.; Wang, K.; Lin, M. W.; Boulesbaa, A.; Rouleau, C. M. et al. Tailoring vacancies far beyond intrinsic levels changes the carrier type and optical response in monolayer MoSe2−x crystals. Nano Lett. 2016, 16, 5213–5220.

    Article  CAS  Google Scholar 

  90. Jayachandran, D.; Oberoi, A.; Sebastian, A.; Choudhury, T. H.; Shankar, B.; Redwing, J. M.; Das, S. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 2020, 3, 646–655.

    Article  Google Scholar 

  91. Nan, H. Y.; Wu, Z. T.; Jiang, J.; Zafar, A.; You, Y. M.; Ni, Z. H. Improving the electrical performance of MoS2 by mild oxygen plasma treatment. J. Phys. D: Appl. Phys. 2017, 50, 154001.

    Article  Google Scholar 

  92. Chee, S. S.; Lee, W. J.; Jo, Y. R.; Cho, M. K.; Chun, D. W.; Baik, H.; Kim, B. J.; Yoon, M. H.; Lee, K.; Ham, M. H. Atomic vacancy control and elemental substitution in a monolayer molybdenum disulfide for high performance optoelectronic device arrays. Adv. Funct. Mater. 2020, 30, 1908147.

    Article  CAS  Google Scholar 

  93. Han, H. V.; Lu, A. Y.; Lu, L. S.; Huang, J. K.; Li, H. N.; Hsu, C. L.; Lin, Y. C.; Chiu, M. H.; Suenaga, K.; Chu, C. W. et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano 2016, 10, 1454–1461.

    Article  CAS  Google Scholar 

  94. Tran, T. T.; Bray, K.; Ford, M. J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41.

    Article  CAS  Google Scholar 

  95. Shawkat, M. S.; Gil, J.; Han, S. S.; Ko, T. J.; Wang, M. J.; Dev, D.; Kwon, J.; Lee, G. H.; Oh, K. H.; Chung, H. S. et al. Thickness-independent semiconducting-to-metallic conversion in wafer-scale two-dimensional PtSe2 layers by plasma-driven chalcogen defect engineering. ACS Appl. Mater. Interfaces 2020, 12, 14341–14351.

    Article  CAS  Google Scholar 

  96. Bretscher, H.; Li, Z. J.; Xiao, J.; Qiu, D. Y.; Refaely-Abramson, S.; Alexander-Webber, J. A.; Tanoh, A.; Fan, Y.; Delport, G.; Williams, C. A. et al. Rational passivation of sulfur vacancy defects in two-dimensional transition metal dichalcogenides. ACS Nano 2021, 15, 8780–8789.

    Article  CAS  Google Scholar 

  97. Li, X. F.; Puretzky, A. A.; Sang, X. H.; KC, S.; Tian, M. K.; Ceballos, F.; Mahjouri-Samani, M.; Wang, K.; Unocic, R. R.; Zhao, H. et al. Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2. Adv. Funct. Mater. 2017, 27, 1603850.

    Article  Google Scholar 

  98. Dhall, R.; Neupane, M. R.; Wickramaratne, D.; Mecklenburg, M.; Li, Z.; Moore, C.; Lake, R. K.; Cronin, S. Direct bandgap transition in many-layer MoS2 by plasma-induced layer decoupling. Adv. Mater. 2015, 27, 1573–1578.

    Article  CAS  Google Scholar 

  99. Dhall, R.; Seyler, K.; Li, Z.; Wickramaratne, D.; Neupane, M. R.; Chatzakis, I.; Kosmowska, E.; Lake, R. K.; Xu, X. D.; Cronin, S. B. Strong circularly polarized photoluminescence from multilayer MoS2 through plasma driven direct-gap transition. ACS Photonics 2016, 3, 310–314.

    Article  CAS  Google Scholar 

  100. Wu, Z. T.; Luo, Z. Z.; Shen, Y. T.; Zhao, W. W.; Wang, W. H.; Nan, H. Y.; Guo, X. T.; Sun, L. T.; Wang, X. R.; You, Y. M. et al. Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation. Nano Res. 2016, 9, 3622–3631.

    Article  CAS  Google Scholar 

  101. Yu, P.; Lin, J. H.; Sun, L. F.; Le, Q. L.; Yu, X. C.; Gao, G. H.; Hsu, C. H.; Wu, D.; Chang, T. R.; Zeng, Q. S. et al. Metal-semiconductor phase-transition in WSe2(1−x)Te2x monolayer. Adv. Mater. 2017, 29, 1603991.

    Article  Google Scholar 

  102. Wang, Q. X.; Zhang, Q.; Zhao, X. X.; Zheng, Y. J.; Wang, J. Y.; Luo, X.; Dan, J. D.; Zhu, R.; Liang, Q. J.; Zhang, L. et al. High-energy gain upconversion in monolayer tungsten disulfide photodetectors. Nano Lett. 2019, 19, 5595–5603.

    Article  CAS  Google Scholar 

  103. Jones, A. M.; Yu, H. Y.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Dery, H.; Yao, W.; Xu, X. D. Excitonic luminescence upconversion in a two-dimensional semiconductor. Nat. Phys. 2016, 12, 323–327.

    Article  CAS  Google Scholar 

  104. Hayee, F.; Yu, L.; Zhang, J. L.; Ciccarino, C. J.; Nguyen, M.; Marshall, A. F.; Aharonovich, I.; Vučković, J.; Narang, P.; Heinz, T. F. et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 2020, 19, 534–539.

    Article  CAS  Google Scholar 

  105. Fournier, C.; Plaud, A.; Roux, S.; Pierret, A.; Rosticher, M.; Watanabe, K.; Taniguchi, T.; Buil, S.; Quélin, X.; Barjon, J. et al. Position-controlled quantum emitters with reproducible emission wavelength in hexagonal boron nitride. Nat. Commun. 2021, 12, 3779.

    Article  CAS  Google Scholar 

  106. Sun, Y. F.; Cheng, H.; Gao, S.; Sun, Z. H.; Liu, Q. H.; Liu, Q.; Lei, F. C.; Yao, T.; He, J. F.; Wei, S. Q. et al. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew. Chem., Int. Ed. 2012, 51, 8727–8731.

    Article  CAS  Google Scholar 

  107. Negri, M.; Francaviglia, L.; Dumcenco, D.; Bosi, M.; Kaplan, D.; Swaminathan, V.; Salviati, G.; Kis, A.; Fabbri, F.; Morral, A. F. I. Quantitative nanoscale absorption mapping: A novel technique to probe optical absorption of two-dimensional materials. Nano Lett. 2020, 20, 567–576.

    Article  CAS  Google Scholar 

  108. Lei, F. C.; Zhang, L.; Sun, Y. F.; Liang, L.; Liu, K. T.; Xu, J. Q.; Zhang, Q.; Pan, B. C.; Luo, Y.; Xie, Y. Atomic-layer-confined doping for atomic-level insights into visible-light water splitting. Angew. Chem. 2015, 127, 9398–9402.

    Article  Google Scholar 

  109. Yang, W. L.; Zhang, L.; Xie, J. F.; Zhang, X. D.; Liu, Q. H.; Yao, T.; Wei, S. Q.; Zhang, Q.; Xie, Y. Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S4 nanosheets for hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 6716–6720.

    Article  CAS  Google Scholar 

  110. Zhang, X. Y.; Zhang, S. F.; Xie, Y. F.; Huang, J. W.; Wang, L.; Cui, Y.; Wang, J. Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering. Nanoscale 2018, 10, 17924–17932.

    Article  CAS  Google Scholar 

  111. Yin, X. B.; Ye, Z. L.; Chenet, D. A.; Ye, Y.; O’Brien, K.; Hone, J. C.; Zhang, X. Edge nonlinear optics on a MoS2 atomic monolayer. Science 2014, 344, 488–490.

    Article  CAS  Google Scholar 

  112. Murray, W.; Lucking, M.; Kahn, E.; Zhang, T. Y.; Fujisawa, K.; Perea-Lopez, N.; Elias, A. L.; Terrones, H.; Terrones, M.; Liu, Z. W. Second harmonic generation in two-dimensional transition metal dichalcogenides with growth and post-synthesis defects. 2D Mater. 2020, 7, 045020.

    Article  CAS  Google Scholar 

  113. Shang, Z.; Tan, Y.; Zhou, S. Q.; Chen, F. Layer-to-layer compression and enhanced optical properties of few-layer graphene nanosheet induced by ion irradiation. Opt. Eng. 2015, 55, 081303.

    Article  Google Scholar 

  114. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  115. Xu, X. Z.; Liu, C.; Sun, Z. H.; Cao, T.; Zhang, Z. H.; Wang, E. G.; Liu, Z. F.; Liu, K. H. Interfacial engineering in graphene bandgap. Chem. Soc. Rev. 2018, 47, 3059–3099.

    Article  CAS  Google Scholar 

  116. Son, J.; Lee, S.; Kim, S. J.; Park, B. C.; Lee, H. K.; Kim, S.; Kim, J. H.; Hong, B. H.; Hong, J. Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor. Nat. Commun. 2016, 7, 13261.

    Article  CAS  Google Scholar 

  117. Zbořil, R.; Karlický, F.; Bourlinos, A. B.; Steriotis, T. A.; Stubos, A. K.; Georgakilas, V.; Šafářová, K.; Jančík, D.; Trapalis, C.; Otyepka, M. Graphene fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 2010, 6, 2885–2891.

    Article  Google Scholar 

  118. Nourbakhsh, A.; Cantoro, M.; Vosch, T.; Pourtois, G.; Clemente, F.; Van Der Veen, M. H.; Hofkens, J.; Heyns, M. M.; De Gendt, S.; Sels, B. F. Bandgap opening in oxygen plasma-treated graphene. Nanotechnology 2010, 21, 435203.

    Article  Google Scholar 

  119. Peng, X. Y.; Ahuja, R. Symmetry breaking induced bandgap in epitaxial graphene layers on SiC. Nano Lett. 2008, 8, 4464–4468.

    Article  CAS  Google Scholar 

  120. Fan, X. F.; Shen, Z. X.; Liu, A. Q.; Kuo, J. L. Band gap opening of graphene by doping small boron nitride domains. Nanoscale 2012, 4, 2157–2165.

    Article  CAS  Google Scholar 

  121. Stanford, M. G.; Pudasaini, P. R.; Belianinov, A.; Cross, N.; Noh, J. H.; Koehler, M. R.; Mandrus, D. G.; Duscher, G.; Rondinone, A. J.; Ivanov, I. N. et al. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions. Sci. Rep. 2016, 6, 27276.

    Article  CAS  Google Scholar 

  122. Fox, D. S.; Zhou, Y. B.; Maguire, P.; O’Neill, A.; Ó’Coileáin, C.; Gatensby, R.; Glushenkov, A. M.; Tao, T.; Duesberg, G. S.; Shvets, I. V. et al. Nanopatterning and electrical tuning of MoS2 layers with a subnanometer helium ion beam. Nano Lett. 2015, 15, 5307–5313.

    Article  CAS  Google Scholar 

  123. Oyedele, A. D.; Yang, S. Z.; Feng, T. L.; Haglund, A. V.; Gu, Y. Y.; Puretzky, A. A.; Briggs, D.; Rouleau, C. M.; Chisholm, M. F.; Unocic, R. R. et al. Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc. 2019, 141, 8928–8936.

    Article  CAS  Google Scholar 

  124. Williams, J. S. Ion implantation of semiconductors. Mater. Sci. Eng. A 1998, 253, 8–15.

    Article  Google Scholar 

  125. Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.

    Article  CAS  Google Scholar 

  126. Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

    Article  CAS  Google Scholar 

  127. Yue, Q.; Chang, S. L.; Qin, S. Q.; Li, J. B. Functionalization of monolayer MoS2 by substitutional doping: A first-principles study. Phys. Lett. A 2013, 377, 1362–1367.

    Article  CAS  Google Scholar 

  128. Horzum, S.; Çakir, D.; Suh, J.; Tongay, S.; Huang, Y. S.; Ho, C. H.; Wu, J.; Sahin, H.; Peeters, F. M. Formation and stability of point defects in monolayer rhenium disulfide. Phys. Rev. B 2014, 89, 155433.

    Article  Google Scholar 

  129. Zhang, Z. H.; Zou, X. L.; Crespi, V. H.; Yakobson, B. I. Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano 2013, 7, 10475–10481.

    Article  CAS  Google Scholar 

  130. Schulman, D. S.; Arnold, A. J.; Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 2018, 47, 3037–3058.

    Article  CAS  Google Scholar 

  131. Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

    Article  CAS  Google Scholar 

  132. Das, S.; Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 2013, 103, 103501.

    Article  Google Scholar 

  133. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky—Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

    Article  CAS  Google Scholar 

  134. Zhang, X. K.; Liu, B. S.; Gao, L.; Yu, H. H.; Liu, X. Z.; Du, J. L.; Xiao, J. K.; Liu, Y. H.; Gu, L.; Liao, Q. L. et al. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat. Commun. 2021, 12, 1522.

    Article  CAS  Google Scholar 

  135. Giannazzo, F.; Fisichella, G.; Greco, G.; Di Franco, S.; Deretzis, I.; La Magna, A.; Bongiorno, C.; Nicotra, G.; Spinella, C.; Scopelliti, M. et al. Ambipolar MoS2 transistors by nanoscale tailoring of Schottky barrier using oxygen plasma functionalization. ACS Appl. Mater. Interfaces 2017, 9, 23164–23174.

    Article  CAS  Google Scholar 

  136. Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

    Article  CAS  Google Scholar 

  137. Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

    Article  CAS  Google Scholar 

  138. Zhu, J. Q.; Wang, Z. C.; Yu, H.; Li, N.; Zhang, J.; Meng, J. L.; Liao, M. Z.; Zhao, J.; Lu, X. B.; Du, L. J. et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 2017, 139, 10216–10219.

    Article  CAS  Google Scholar 

  139. Song, S.; Keum, D. H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y. H. Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett. 2016, 16, 188–193.

    Article  CAS  Google Scholar 

  140. Han, C.; Hu, Z. H.; Gomes, L. C.; Bao, Y.; Carvalho, A.; Tan, S. J. R.; Lei, B.; Xiang, D.; Wu, J.; Qi, D. Y. et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett. 2017, 17, 4122–4129.

    Article  CAS  Google Scholar 

  141. Zhang, X. K.; Liao, Q. L.; Kang, Z.; Liu, B. S.; Liu, X. Z.; Ou, Y.; Xiao, J. K.; Du, J. L.; Liu, Y. H.; Gao, L. et al. Hidden vacancy benefit in monolayer 2D semiconductors. Adv. Mater. 2021, 33, 2007051.

    Article  CAS  Google Scholar 

  142. Sangwan, V. K.; Lee, H. S.; Bergeron, H.; Balla, I.; Beck, M. E.; Chen, K. S.; Hersam, M. C. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018, 554, 500–504.

    Article  CAS  Google Scholar 

  143. Zhao, Q. H.; Wang, W.; Carrascoso-Plana, F.; Jie, W. Q.; Wang, T.; Castellanos-Gomez, A.; Frisenda, R. The role of traps in the photocurrent generation mechanism in thin InSe photodetectors. Mater. Horiz. 2020, 7, 252–262.

    Article  CAS  Google Scholar 

  144. Xie, Y.; Liang, F.; Chi, S. M.; Wang, D.; Zhong, K.; Yu, H. H.; Zhang, H. J.; Chen, Y. X.; Wang, J. Y. Defect engineering of MoS2 for room-temperature terahertz photodetection. ACS Appl. Mater. Interfaces 2020, 12, 7351–7357.

    Article  CAS  Google Scholar 

  145. Kang, M. G.; Kim, B.; Ryu, S. H.; Jung, S. W.; Kim, J.; Moreschini, L.; Jozwiak, C.; Rotenberg, E.; Bostwick, A.; Kim, K. S. Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nano Lett. 2017, 17, 1610–1615.

    Article  CAS  Google Scholar 

  146. Deng, B. C.; Tran, V.; Xie, Y. J.; Jiang, H.; Li, C.; Guo, Q. S.; Wang, X. M.; Tian, H.; Koester, S. J.; Wang, H. et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun. 2017, 8, 14474.

    Article  CAS  Google Scholar 

  147. Min, B. K.; Nguyen, V. T.; Kim, S. J.; Yi, Y.; Choi, C. G. Surface plasmon resonance-enhanced near-infrared absorption in single-layer MoS2 with vertically aligned nanoflakes. ACS Appl. Mater. Interfaces 2020, 12, 14476–14483.

    Article  CAS  Google Scholar 

  148. Yuan, S. F.; Shen, C. F.; Deng, B. C.; Chen, X. L.; Guo, Q. S.; Ma, Y. Q.; Abbas, A.; Liu, B. L.; Haiges, R.; Ott, C. et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 2018, 18, 3172–3179.

    Article  CAS  Google Scholar 

  149. Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.

    Article  Google Scholar 

  150. Hwang, A.; Park, M.; Park, Y.; Shim, Y.; Youn, S.; Lee, C. H.; Jeong, H. B.; Jeong, H. Y.; Chang, J.; Lee, K. et al. Visible and infrared dual-band imaging via Ge/MoS2 van der Waals heterostructure. Sci. Adv. 2021, 7, eabj2521.

    Article  CAS  Google Scholar 

  151. Yu, X. C.; Zhang, S. L.; Zeng, H. B.; Wang, Q. J. Lateral black phosphorene P—N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy 2016, 25, 34–41.

    Article  CAS  Google Scholar 

  152. Mitta, S. B.; Ali, F.; Yang, Z.; Moon, I.; Ahmed, F.; Yoo, T. J.; Lee, B. H.; Yoo, W. J. Gate-modulated ultrasensitive visible and near-infrared photodetection of oxygen plasma-treated WSe2 lateral pn-homojunctions. ACS Appl. Mater. Interfaces 2020, 12, 23261–23271.

    Article  CAS  Google Scholar 

  153. Wu, E. P.; Wu, D.; Jia, C.; Wang, Y. G.; Yuan, H. Y.; Zeng, L. H.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics 2019, 6, 565–572.

    Article  CAS  Google Scholar 

  154. Rao, G. F.; Wang, X. P.; Wang, Y.; Wangyang, P. H.; Yan, C. Y.; Chu, J. W.; Xue, L. X.; Gong, C. H.; Huang, J. W.; Xiong, J. et al. Two-dimensional heterostructure promoted infrared photodetection devices. InfoMat 2019, 1, 272–288.

    Article  CAS  Google Scholar 

  155. Khan, M. F.; Rehman, S.; Akhtar, I.; Aftab, S.; Ajmal, H. M. S.; Khan, W.; Kim, D. K.; Eom, J. High mobility ReSe2 field effect transistors: Schottky-barrier-height-dependent photoresponsivity and broadband light detection with Co decoration. 2D Mater. 2020, 7, 015010.

    Article  CAS  Google Scholar 

  156. Rong, Y. M.; Sheng, Y. W.; Pacios, M.; Wang, X. C.; He, Z. Y.; Bhaskaran, H.; Warner, J. H. Electroluminescence dynamics across grain boundary regions of monolayer tungsten disulfide. ACS Nano 2016, 10, 1093–1100.

    Article  CAS  Google Scholar 

  157. Palacios-Berraquero, C.; Barbone, M.; Kara, D. M.; Chen, X. L.; Goykhman, I.; Yoon, D.; Ott, A. K.; Beitner, J.; Watanabe, K.; Taniguchi, T. et al. Atomically thin quantum light-emitting diodes. Nat. Commun. 2016, 7, 12978.

    Article  CAS  Google Scholar 

  158. He, H. K.; Yang, R.; Zhou, W.; Huang, H. M.; Xiong, J.; Gan, L.; Zhai, T. Y.; Guo, X. Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 2018, 14, 1800079.

    Article  Google Scholar 

  159. Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial supports from the National Natural Science Foundation of China (No. 61904110) and Young Teachers’ Startup Fund for Scientific Research of Shenzhen University (No. 860-000002110426).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wugang Liao or Yang Chai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Yang, P., Liou, J.J. et al. Defect engineering of two-dimensional materials towards next-generation electronics and optoelectronics. Nano Res. 16, 3104–3124 (2023). https://doi.org/10.1007/s12274-022-5016-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5016-9

Keywords

Navigation