Skip to main content
Log in

In situ speciation analysis and kinetic study of arsenic adsorption on ferrihydrite with surface-enhanced Raman spectroscopy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Arsenic pollution poses a serious threat to human health, and is one of the most concerning environmental problems worldwide. The adsorption, fixation, and dissolution behaviors of arsenic on the surface of iron-(hydr-) oxides influence the environmental routes of arsenic cycle geochemistry. Both inner-sphere and outer-sphere adsorption configurations of arsenic on iron oxides have been proposed based on X-ray adsorption spectra. However, there is no systematic study on the in situ speciation analysis and adsorption kinetics of these species at such interfaces, because of the lack of an efficient monitoring strategy. The correlation of surface speciation and environmental stability is still unknown. Here, a shell-isolated SiO2@Ag@Au-based surface-enhanced Raman spectroscopy (SERS) platform was developed for speciation analysis of the adsorbed arsenic species by eliminating the chemical interaction between arsenic and silver. Using ferrihydrite as a typical iron oxide, the intrinsic Raman spectra of the inner-sphere (∼ 830 cm−1) and outer-sphere (∼ 660 cm−1) complexes at the adsorption interface were identified. For the first time, the in situ kinetic monitoring of the formation and transformation of these species was realized. By correlating the speciation to the sequential extraction results, the environmental stability of arsenic on ferrihydrite was shown to be closely related to the adsorption configuration. It was shown that stability can be significantly promoted by transforming loosely bonded species (outer-sphere complexes) into inner-sphere structures. Our work demonstrated the applicability of SERS with shell-isolated plasmonic particles for arsenic geochemical cycle monitoring and mechanism studies. It also provided a convenient tool for developing effective strategies for arsenic pollutant control and abatement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Savage, L.; Carey, M.; Williams, P. N.; Meharg, A. A. Maritime deposition of organic and inorganic arsenic. Environ. Sci. Technol. 2019, 53, 7288–7295.

    Article  CAS  Google Scholar 

  2. Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850.

    Article  CAS  Google Scholar 

  3. Sarkar, A.; Paul, B. The global menace of arsenic and its conventional remediation—A critical review. Chemosphere 2016, 158, 37–49.

    Article  CAS  Google Scholar 

  4. Park, J. H.; Han, Y. S.; Ahn, J. S. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream. Water Res. 2016, 106, 295–303.

    Article  CAS  Google Scholar 

  5. Zhang, X.; Zhao, R.; Wu, X.; Mu, W. P.; Wu, C. Delineating the controlling mechanisms of arsenic release into groundwater and its associated health risks in the Southern Loess Plateau, China. Water Res. 2022, 219, 118530.

    Article  CAS  Google Scholar 

  6. Zhang, G. S.; Liu, F. D.; Liu, H. J.; Qu, J. H.; Liu, R. P. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: An X-ray absorption spectroscopy investigation. Environ. Sci. Technol. 2014, 48, 10316–10322.

    Article  CAS  Google Scholar 

  7. Cai, X. L.; ThomasArrigo, L. K.; Fang, X.; Bouchet, S.; Cui, Y. S.; Kretzschmar, R. Impact of organic matter on microbially-mediated reduction and mobilization of arsenic and iron in arsenic(V)-bearing ferrihydrite. Environ. Sci. Technol. 2021, 55, 1319–1328.

    Article  CAS  Google Scholar 

  8. Hansel, C. M.; Learman, D. R.; Lentini, C. J.; Ekstrom, E. B. Effect of adsorbed and substituted Al on Fe(II)-induced mineralization pathways of ferrihydrite. Geochim. Cosmochim. Acta 2011, 75, 4653–4666.

    Article  CAS  Google Scholar 

  9. Goldberg, S.; Johnston, C. T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J. Colloid Interface Sci. 2001, 234, 204–216.

    Article  CAS  Google Scholar 

  10. Tournassat, C.; Charlet, L.; Bosbach, D.; Manceau, A. Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate. Environ. Sci. Technol. 2002, 36, 493–500.

    Article  CAS  Google Scholar 

  11. Duan, Y. H.; Li, R.; Gan, Y. Q.; Yu, K.; Tong, J. R.; Zeng, G. C.; Ke, D. F.; Wu, W. X.; Liu, C. X. Impact of physico-chemical heterogeneity on arsenic sorption and reactive transport under water extraction. Environ. Sci. Technol. 2020, 54, 14974–14983.

    Article  CAS  Google Scholar 

  12. Glade, S.; Bandaru, S. R. S.; Nahata, M.; Majmudar, J.; Gadgil, A. Adapting a drinking water treatment technology for arsenic removal to the context of a small, low-income California community. Water Res. 2021, 204, 117595.

    Article  CAS  Google Scholar 

  13. Wen, Z. P.; Lu, J.; Zhang, Y. L.; Cheng, G.; Guo, S.; Wei, P. P.; Ming, Y. A.; Wang, Y. R.; Chen, R. Simultaneous oxidation and immobilization of arsenite from water by nanosized magnetic mesoporous iron manganese bimetal oxides (Nanosized-MMIM): Synergistic effect and interface catalysis. Chem. Eng. J. 2020, 391, 123578.

    Article  CAS  Google Scholar 

  14. Siddiqui, S. I.; Chaudhry, S. A. Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement. Process Saf. Environ. Prot. 2017, 111, 592–626.

    Article  CAS  Google Scholar 

  15. Shi, Q. T.; Yan, L.; Chan, T.; Jing, C. Y. Arsenic adsorption on lanthanum-impregnated activated alumina: Spectroscopic and DFT study. ACS Appl. Mater. Interfaces 2015, 7, 26735–26741.

    Article  CAS  Google Scholar 

  16. Camm, G. S.; Glass, H. J.; Bryce, D. W.; Butcher, A. R. Characterisation of a mining-related arsenic-contaminated site, Cornwall, UK. J. Geochem. Explor. 2004, 82, 1–15.

    Article  CAS  Google Scholar 

  17. Amstaetter, K.; Borch, T.; Larese-Casanova, P.; Kappler, A. Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ. Sci. Technol. 2010, 44, 102–108.

    Article  CAS  Google Scholar 

  18. Nearing, M. M.; Koch, I.; Reimer, K. J. Complementary arsenic speciation methods: A review. Spectrochim. Acta, Part B At. Spectrosc. 2014, 99, 150–162.

    Article  CAS  Google Scholar 

  19. Han, Y. S.; Jeong, H. Y.; Demond, A. H.; Hayes, K. F. X-ray absorption and photoelectron spectroscopic study of the association of As(III) with nanoparticulate FeS and FeS-coated sand. Water Res. 2011, 45, 5727–5735.

    Article  CAS  Google Scholar 

  20. Kim, E. J.; Batchelor, B. Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic with synthesized pyrite. Environ. Sci. Technol. 2009, 43, 2899–2904.

    Article  CAS  Google Scholar 

  21. Sherman, D. M.; Randall, S. R. Surface complexation of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 2003, 67, 4223–4230.

    Article  CAS  Google Scholar 

  22. Fan, J. X.; Wang, Y. J.; Liu, C.; Wang, L. H.; Yang, K.; Zhou, D. M.; Li, W.; Sparks, D. L. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy. J. Hazard. Mater. 2014, 279, 212–219.

    Article  CAS  Google Scholar 

  23. Dzade, N. Y.; De Leeuw, N. H. Density functional theory characterization of the structures of H3AsO3 and H3AsO4 adsorption complexes on ferrihydrite. Environ. Sci. Processes Impacts 2018, 20, 977–987.

    Article  CAS  Google Scholar 

  24. Lin, J. S.; Radjenovic, P. M.; Jin, H.; Li, J. F. Plasmonic core—shell nanoparticle enhanced spectroscopies for surface analysis. Anal. Chem. 2021, 93, 6573–6582.

    Article  CAS  Google Scholar 

  25. Müller, K.; Ciminelli, V. S. T.; Dantas, M. S. S.; Willscher, S. A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Res. 2010, 44, 5660–5672.

    Article  Google Scholar 

  26. Yan, L.; Chan, T. S.; Jing, C. Y. Arsenic adsorption on hematite facets: Spectroscopy and DFT study. Environ. Sci. Nano 2020, 7, 3927–3939.

    Article  CAS  Google Scholar 

  27. Sudhakar, C.; Anil Kumar, A.; Bhuin, R. G.; Sen Gupta, S.; Natarajan, G.; Pradeep, T. Species-specific uptake of arsenic on confined metastable 2-line ferrihydrite: A combined Raman-X-Ray photoelectron spectroscopy investigation of the adsorption mechanism. ACS Sustainable Chem. Eng. 2018, 6, 9990–10000.

    Article  CAS  Google Scholar 

  28. Finnie, P.; Li-Pook-Than, A.; Lefebvre, J. The dynamics of the nucleation, growth and termination of single-walled carbon nanotubes from in situ Raman spectroscopy during chemical vapor deposition. Nano Res. 2009, 2, 783–792.

    Article  Google Scholar 

  29. Sharma, B.; Frontiera, R. R.; Henry, A. I.; Ringe, E.; Van Duyne, R. P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25.

    Article  CAS  Google Scholar 

  30. Yamamoto, Y. S.; Ozaki, Y.; Itoh, T. Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering. J. Photochem. Photobiol. C Photochem. Rev. 2014, 21, 81–104.

    Article  CAS  Google Scholar 

  31. Hao, J. M.; Han, M. J.; Han, S. M.; Meng, X. G.; Su, T. L.; Wang, Q. K. SERS detection of arsenic in water: A review. J. Environ. Sci. 2015, 36, 152–162.

    Article  CAS  Google Scholar 

  32. Gao, F.; Tian, X D.; Lin, J. S.; Dong, J. C.; Lin, X. M.; Li, J. F. In situ Raman, FTIR, and XRD spectroscopic studies in fuel cells and rechargeable batteries. Nano Res., in press, https://doi.org/10.1007/s12274-021-4044-1.

  33. Mulvihill, M.; Tao, A.; Benjauthrit, K.; Arnold, J.; Yang, P. D. Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water. Angew. Chem., Int. Ed. 2008, 47, 6456–6460.

    Article  CAS  Google Scholar 

  34. Wonner, K.; Murke, S.; Alfarano, S. R.; Hosseini, P.; Havenith, M.; Tschulik, K. Operando electrochemical SERS monitors nanoparticle reactions by capping agent fingerprints. Nano Res. 2022, 15, 4517–4524.

    Article  CAS  Google Scholar 

  35. Xu, Z. H.; Jing, C. Y.; Hao, J. M.; Christodoulatos, C.; Korfiatis, G. P.; Li, F. S.; Meng, X. G. Effect of bonding interactions between arsenate and silver nanofilm on surface-enhanced Raman scattering sensitivity. J. Phys. Chem. C 2012, 116, 325–329.

    Article  CAS  Google Scholar 

  36. Uzayisenga, V.; Lin, X. D.; Li, L. M.; Anema, J. R.; Yang, Z. L.; Huang, Y. F.; Lin, H. X.; Li, S. B.; Li, J. F.; Tian, Z. Q. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy. Langmuir 2012, 28, 9140–9146.

    Article  CAS  Google Scholar 

  37. Schwertmann, U.; Cornell, R. M. Iron Oxides in the Laboratory: Preparation and Characterization; John Wiley & Sons: Hoboken, 2000.

    Book  Google Scholar 

  38. Quevauviller, P.; Rauret, G.; Muntau, H.; Ure, A. M.; Rubio, R.; López-Sánchez, J. F.; Fiedler, H. D.; Griepink, B. Evaluation of a sequential extraction procedure for the determination of extractable trace metal contents in sediments. Fresenius’ J. Anal. Chem. 1994, 349, 808–814.

    Article  CAS  Google Scholar 

  39. Xu, S. Y.; Tang, W. Q.; Chase, D. B.; Sparks, D. L.; Rabolt, J. F. A highly sensitive, selective, and reproducible SERS sensor for detection of trace metalloids in the environment. ACS Appl. Nano Mater. 2018, 1, 1257–1264.

    Article  CAS  Google Scholar 

  40. Du, J. J.; Cui, J. L.; Jing, C. Y. Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor. Chem. Commun. 2014, 50, 347–349.

    Article  CAS  Google Scholar 

  41. Zong, C. H.; Jin, X. T.; Liu, J. W. Critical review of bio/nano sensors for arsenic detection. Trends Environ. Anal. Chem. 2021, 32, e00143.

  42. Farquhar, M. L.; Charnock, J. M.; Livens, F. R.; Vaughan, D. J. Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: An X-ray absorption spectroscopy study. Environ. Sci. Technol. 2002, 36, 1757–1762.

    Article  CAS  Google Scholar 

  43. Jain, A.; Raven, K. P.; Loeppert, R. H. Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH release stoichiometry. Environ. Sci. Technol. 1999, 33, 1179–1184.

    Article  CAS  Google Scholar 

  44. Liang, Y. J.; Min, X. B.; Chai, L. Y.; Wang, M.; Liyang, W. J.; Pan, Q. L.; Okido, M. Stabilization of arsenic sludge with mechanochemically modified zero valent iron. Chemosphere 2017, 168, 1142–1151.

    Article  CAS  Google Scholar 

  45. Bai, Y. H.; Yang, T. T.; Liang, J. S.; Qu, J. H. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems. Water Res. 2016, 98, 119–127.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from the National Natural Science Foundation of China (Nos. 22106147 and 22076052), Natural Science Foundation of Hubei Province (No. 2021CFB131), China Postdoctoral Science Foundation (No. 2021M703005), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. G1323521102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihua Zhu or Qin Shuai.

Electronic Supplementary Material

12274_2022_4975_MOESM1_ESM.pdf

In situ speciation analysis and kinetic study of arsenic adsorption on ferrihydrite with surface-enhanced Raman spectroscopy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, L., Wang, M., Zhu, L. et al. In situ speciation analysis and kinetic study of arsenic adsorption on ferrihydrite with surface-enhanced Raman spectroscopy. Nano Res. 16, 3046–3054 (2023). https://doi.org/10.1007/s12274-022-4975-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4975-1

Keywords

Navigation