Skip to main content
Log in

Sulfonylcalix[4]arene-based metal-organic polyhedra with hierarchical porous structures for efficient Xe/Kr separation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Multiple space from the interior of metal-organic polyhedra (MOPs), the exterior among MOPs, and the inherent nature of big organic molecules makes MOPs as promising platform with hierarchical porous structures, especially when well-elucidated reticular chemistry principles were used. Herein we describe the preparation of a series of isoreticular octahedral MOPs featuring Zn4-p-tert-butylsulfonylcalix[4]arene clusters by the metal-directed assembly of three rigid organic ligands with different lengths. Intercage hydrogen-bonds and hydrophobic interactions between sulfonylcalix[4]arene groups direct the stacking of discrete MOPs into a novel permanent hierarchical porous material. More importantly, the optimal MOP 1-Zn exhibits high adsorption capacity of Xe and excellent Xe/Kr (20/80, v/v) separation performance, as demonstrated by adsorption isotherms, breakthrough experiments, and density functional theory calculations. Additionally, grand canonical Monte Carlo (GCMC) and dispersion-corrected density functional theory (DFT-D) theoretical calculations provide molecular-level insight over the adsorption/separation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marshall, J.; Bird, A. C. A comparative histopathological study of argon and krypton laser irradiations of the human retina. Br. J. Ophthalmol. 1979, 63, 657–668.

    Article  CAS  Google Scholar 

  2. Lane, G. A.; Nahrwold, M. L.; Tait, A. R.; Taylor-Busch, M.; Cohen, P. J.; Beaudoin, A. R. Anesthetics as teratogens: Nitrous oxide is fetotoxic, xenon is not. Science 1980, 210, 899–901.

    Article  CAS  Google Scholar 

  3. Chen, F. Q.; Ding, J. Q.; Guo, K. Q.; Yang, L.; Zhang, Z. G.; Yang, Q. W.; Yang, Y. W.; Bao, Z. B.; He, Y.; Ren, Q. L. CoNi alloy nanoparticles embedded in metal-organic framework-derived carbon for the highly efficient separation of xenon and krypton via a chargetransfer effect. Angew. Chem., Int. Ed. 2021, 60, 2431–2438.

    Article  CAS  Google Scholar 

  4. Nandanwar, S. U.; Coldsnow, K.; Utgikar, V.; Sabharwall, P.; Aston, D. E. Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment-A review. Chem. Eng. J. 2016, 306, 369–381.

    Article  CAS  Google Scholar 

  5. Soelberg, N. R.; Garn, T. G.; Greenhalgh, M. R.; Law, J. D.; Jubin, R.; Strachan, D. M.; Thallapally, P. K. Radioactive iodine and krypton control for nuclear fuel reprocessing facilities. Sci. Technol. Nucl. Install. 2013, 2013, 702496.

    Article  Google Scholar 

  6. Zhang, H. P.; Fan, Y. L.; Krishna, R.; Feng, X. F.; Wang, L.; Luo, F. Robust metal-organic framework with multiple traps for trace Xe/Kr separation. Sci. Bull. 2021, 66, 1073–1079.

    Article  CAS  Google Scholar 

  7. Chen, L. J.; Reiss, P. S.; Chong, S. Y.; Holden, D.; Jelfs, K. E.; Hasell, T.; Little, M. A.; Kewley, A.; Briggs, M. E.; Stephenson, A. et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater. 2014, 13, 954–960.

    Article  CAS  Google Scholar 

  8. Li, J. R.; Yu, J. M.; Lu, W. G.; Sun, L. B.; Sculley, J.; Balbuena, P. B.; Zhou, H. C. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat. Commun. 2013, 4, 1538.

    Article  Google Scholar 

  9. Tan, C. X.; Jiao, J. J.; Li, Z. J.; Liu, Y.; Han, X.; Cui, Y. Design and assembly of a chiral metallosalen-based octahedral coordination cage for supramolecular asymmetric catalysis. Angew. Chem., Int. Ed. 2018, 57, 2085–2090.

    Article  CAS  Google Scholar 

  10. Wu, K.; Li, K.; Chen, S.; Hou, Y. J.; Lu, Y. L.; Wang, J. S.; Wei, M. J.; Pan, M.; Su, C. Y. The redox coupling effect in a photocatalytic RuII-PdII cage with TTF guest as electron relay mediator for visible-light hydrogen-evolving promotion. Angew. Chem., Int. Ed. 2020, 59, 2639–2643.

    Article  CAS  Google Scholar 

  11. Gosselin, A. J.; Rowland, C. A.; Bloch, E. D. Permanently microporous metal-organic polyhedral. Chem. Rev. 2020, 120, 8987–9014.

    Article  CAS  Google Scholar 

  12. Zhu, Z. Z.; Tian, C. B.; Sun, Q. F. Coordination-assembled molecular cages with metal cluster nodes. Chem. Rec. 2021, 21, 498–522.

    Article  CAS  Google Scholar 

  13. Grancha, T.; Carné-Sánchez, A.; Hernández-López, L.; Albalad, J.; Imaz, I.; Juanhuix, J.; Maspoch, D. Phase transfer of rhodium(II)-based metal-organic polyhedra bearing coordinatively bound cargo enables molecular separation. J. Am. Chem. Soc. 2019, 141, 18349–18355.

    Article  CAS  Google Scholar 

  14. Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.

    Article  Google Scholar 

  15. Pan, M.; Liao, W. M.; Yin, S. Y.; Sun, S. S.; Su, C. Y. Single-phase white-light-emitting and photoluminescent color—tuning coordination assemblies. Chem. Rev. 2018, 118, 8889–8935.

    Article  CAS  Google Scholar 

  16. Yuan, G. Z.; Jiang, H.; Zhang, L. Y.; Liu, Y.; Cui, Y. Metallosalen-based crystalline porous materials: Synthesis and property. Coord. Chem. Rev. 2019, 378, 483–499.

    Article  CAS  Google Scholar 

  17. Lal, G.; Derakhshandeh, M.; Akhtar, F.; Spasyuk, D. M.; Lin, J. B.; Trifkovic, M.; Shimizu, G. K. H. Mechanical properties of a metal-organic framework formed by covalent cross-linking of metal-organic polyhedral. J. Am. Chem. Soc. 2019, 141, 1045–1053.

    Article  CAS  Google Scholar 

  18. Bloch, W. M.; Babarao, R.; Schneider, M. L. On/off porosity switching and post-assembly modifications of Cu4L4 metal-organic polyhedral. Chem. Sci. 2020, 11, 3664–3671.

    Article  CAS  Google Scholar 

  19. Zhang, D. W.; Ronson, T. K.; Nitschke, J. R. Functional capsules via subcomponent self-assembly. Acc. Chem. Res. 2018, 51, 2423–2436.

    Article  CAS  Google Scholar 

  20. Gong, W.; Chu, D. D.; Jiang, H.; Chen, X.; Cui, Y.; Liu, Y. Permanent porous hydrogen-bonded frameworks with two types of Brønsted acid sites for heterogeneous asymmetric catalysis. Nat. Commun. 2019, 10, 600.

    Article  CAS  Google Scholar 

  21. Wang, Z.; He, L. Z.; Liu, B. Q.; Zhou, L. P.; Cai, L. X.; Hu, S. J.; Li, X. Z.; Li, Z. K.; Chen, T. F.; Li, X. P. et al. Coordination-assembled water-soluble anionic lanthanide organic polyhedra for luminescent labeling and magnetic resonance imaging. J. Am. Chem. Soc. 2020, 142, 16409–16419.

    Article  CAS  Google Scholar 

  22. Wang, L. J.; Li, X.; Bai, S.; Wang, Y. Y.; Han, Y. F. Self-assembly, structural transformation, and guest-binding properties of supramolecular assemblies with triangular metal-metal bonded units. J. Am. Chem. Soc. 2020, 142, 2524–2531.

    Article  CAS  Google Scholar 

  23. Chen, S.; Behera, N.; Yang, C.; Dong, Q. B.; Zheng, B. S.; Li, Y. Y.; Tang, Q.; Wang, Z. X.; Wang, Y. Q.; Duan, J. G. A chemically stable nanoporous coordination polymer with fixed and free Cu2+ ions for boosted C2H2/CO2 separation. Nano Res. 2021, 14, 546–553.

    Article  CAS  Google Scholar 

  24. Vardhan, H.; Yusubov, M.; Verpoort, F. Self-assembled metal-organic polyhedra: An overview of various applications. Coord. Chem. Rev. 2016, 306, 171–194.

    Article  CAS  Google Scholar 

  25. Zhang, X.; Dong, X.; Lu, W. G.; Luo, D.; Zhu, X. W.; Li, X.; Zhou, X. P.; Li, D. Fine-tuning apertures of metal-organic cages: Encapsulation of carbon dioxide in solution and solid state. J. Am. Chem. Soc. 2019, 141, 11621–11627.

    Article  CAS  Google Scholar 

  26. Dai, F. R.; Wang, Z. Q. Modular assembly of metal-organic supercontainers incorporating sulfonylcalixarenes. J. Am. Chem. Soc. 2012, 134, 8002–8005.

    Article  CAS  Google Scholar 

  27. Bi, Y. F.; Du, S. C.; Liao, W. P. Thiacalixarene-based nanoscale polyhedral coordination cages. Coord. Chem. Rev. 2014, 276, 61–72.

    Article  CAS  Google Scholar 

  28. Wang, S. T.; Gao, X. H.; Hang, X. X.; Zhu, X. F.; Han, H. T.; Liao, W. P.; Chen, W. Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 16236–16239.

    Article  CAS  Google Scholar 

  29. Liang, Y.; Fang, Y.; Cui, Y.; Zhou, H. C. A stable biocompatible porous coordination cage promotes in vivo liver tumor inhibition. Nano Res. 2021, 14, 3407–3415.

    Article  CAS  Google Scholar 

  30. Dai, F. R.; Sambasivam, U.; Hammerstrom, A. J.; Wang, Z. Q. Synthetic supercontainers exhibit distinct solution versus solid state guest-binding behavior. J. Am. Chem. Soc. 2014, 136, 7480–7491.

    Article  CAS  Google Scholar 

  31. Hang, X. X.; Liu, B.; Zhu, X. F.; Wang, S. T.; Han, H. T.; Liao, W. P.; Liu, Y. L.; Hu, C. H. Discrete {Ni40} coordination cage: A calixarene-based Johnson-type (J17) hexadecahedron. J. Am. Chem. Soc. 2016, 138, 2969–2972.

    Article  CAS  Google Scholar 

  32. Fang, Y.; Xiao, Z. F.; Kirchon, A.; Li, J. L.; Jin, F. Y.; Togo, T.; Zhang, L. L.; Zhu, C. F.; Zhou, H. C. Bimolecular proximity of a ruthenium complex and methylene blue within an anionic porous coordination cage for enhancing photocatalytic activity. Chem. Sci. 2019, 10, 3529–3534.

    Article  CAS  Google Scholar 

  33. Han, H. T.; Kan, L.; Li, P.; Zhang, G. S.; Li, K. Y.; Liao, W. P.; Liu, Y. L.; Chen, W.; Hu, C. T. 4. 8 nm concave {M72} (M = Co, Ni, Fe) metal-organic polyhedra capped by 18 calixarenes. Sci. China Chem. 2021, 64, 426–431.

    Article  CAS  Google Scholar 

  34. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7–13.

    Article  CAS  Google Scholar 

  35. Tranchemontagne, D. J.; Ni, Z.; O’Keeffe, M.; Yaghi, O. M. Reticular chemistry of metal-organic polyhedral. Angew. Chem., Int. Ed. 2008, 47, 5136–5147.

    Article  CAS  Google Scholar 

  36. Zhang, Y. Y.; Gao, W. X.; Lin, L.; Jin, G. X. Recent advances in the construction and applications of heterometallic macrocycles and cages. Coord. Chem. Rev. 2017, 344, 323–344.

    Article  CAS  Google Scholar 

  37. Wang, Y.; Chang, J. P.; Xu, R.; Bai, S.; Wang, D.; Yang, G. P.; Sun, L. Y.; Li, P.; Han, Y. F. N-heterocyclic carbenes and their precursors in functionalised porous materials. Chem. Soc. Rev. 2021, 50, 13559–13586.

    Article  CAS  Google Scholar 

  38. Argent, S. P.; da Silva, I.; Greenaway, A.; Savage, M.; Humby, J.; Davies, A. J.; Nowell, H.; Lewis, W.; Manuel, P.; Tang, C. C. et al. Porous metal-organic polyhedra: Morphology, porosity, and guest binding. Inorg. Chem. 2020, 59, 15646–15658.

    Article  CAS  Google Scholar 

  39. Liu, G. L.; Zhou, M.; Su, K. Z.; Babarao, R.; Yuan, D. Q.; Hong, M. C. Stabilizing the extrinsic porosity in metal-organic cages-based supramolecular framework by in situ catalytic polymerization. CCS Chem. 2020, 3, 1382–1390.

    Article  Google Scholar 

  40. Dong, Q. B.; Zhang, X.; Liu, S.; Lin, R. B.; Guo, Y. N.; Ma, Y. S.; Yonezu, A.; Krishna, R.; Liu, G. P.; Duan, J. G. et al. Tuning gate-opening of a flexible metal-organic framework for ternary gas sieving separation. Angew. Chem., Int. Ed. 2020, 59, 22756–22762.

    Article  CAS  Google Scholar 

  41. Behera, N.; Duan, J. G.; Jin, W. Q.; Kitagawa, S. The chemistry and applications of flexible porous coordination polymers. EnergyChem 2021, 3, 100067.

    Article  CAS  Google Scholar 

  42. Zhao, X.; Wang, Y. X.; Li, D. S.; Bu, X. H.; Feng, P. Y. Metal-organic frameworks for separation. Adv. Mater. 2018, 30, 1705189.

    Article  Google Scholar 

  43. Wang, J. Z.; Fu, X. P.; Liu, Q. Y.; Chen, L.; Xu, L. P.; Wang, Y. L. Dinuclear nickel-oxygen cluster-based metal-organic frameworks with octahedral cages for efficient Xe/Kr separation. Inorg. Chem. 2022, 61, 5737–5743.

    Article  CAS  Google Scholar 

  44. Lee, S. J.; Kim, K. C.; Yoon, T. U.; Kim, M. B.; Bae, Y. S. Selective dynamic separation of Xe and Kr in Co-MOF-74 through strong binding strength between Xe atom and unsaturated Co2+ site. Micropor. Mesopor. Mater. 2016, 236, 284–291.

    Article  CAS  Google Scholar 

  45. Niu, Z.; Fan, Z. W.; Pham, T.; Verma, G.; Forrest, K. A.; Space, B.; Thallapally, P. K.; Al-Enizi, A. M.; Ma, S. Q. Self-adjusting metal-organic framework for efficient capture of trace xenon and krypton. Angew. Chem., Int. Ed. 2022, 61, e202117807.

    Article  CAS  Google Scholar 

  46. Wang, H.; Yao, K. X.; Zhang, Z. J.; Jagiello, J.; Gong, Q. H.; Han, Y.; Li, J. The first example of commensurate adsorption of atomic gas in a MOF and effective separation of xenon from other noble gases. Chem. Sci. 2014, 5, 620–624.

    Article  CAS  Google Scholar 

  47. Chen, X. Y.; Plonka, A. M.; Banerjee, D.; Krishna, R.; Schaef, H. T.; Ghose, S.; Thallapally, P. K.; Parise, J. B. Direct observation of Xe and Kr adsorption in a Xe-selective microporous metal-organic framework. J. Am. Chem. Soc. 2015, 137, 7007–7010.

    Article  CAS  Google Scholar 

  48. Mohamed, M. H.; Elsaidi, S. K.; Pham, T.; Forrest, K. A.; Schaef, H. T.; Hogan, A.; Wojtas, L.; Xu, W. Q.; Space, B.; Zaworotko, M. J. et al. Hybrid ultra-microporous materials for selective xenon adsorption and separation. Angew. Chem., Int. Ed. 2016, 55, 8285–8289.

    Article  CAS  Google Scholar 

  49. Li, L. Y.; Guo, L. D.; Zhang, Z. G.; Yang, Q. W.; Yang, Y. W.; Bao, Z. B.; Ren, Q. L.; Li, J. A robust squarate-based metal-organic framework demonstrates record-high affinity and selectivity for xenon over krypton. J. Am. Chem. Soc. 2019, 141, 9358–9364.

    Article  CAS  Google Scholar 

  50. Bae, Y. S.; Hauser, B. G.; Colón, Y. J.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q. High xenon/krypton selectivity in a metal-organic framework with small pores and strong adsorption sites. Micropor. Mesopor. Mater. 2013, 169, 176–179.

    Article  CAS  Google Scholar 

  51. Lee, S. J.; Yoon, T. U.; Kim, A. R.; Kim, S. Y.; Cho, K. H.; Hwang, Y. K.; Yeon, J. W.; Bae, Y. S. Adsorptive separation of xenon/krypton mixtures using a zirconium-based metal-organic framework with high hydrothermal and radioactive stabilities. J. Hazard. Mater. 2016, 320, 513–520.

    Article  CAS  Google Scholar 

  52. Fu, X. P.; Li, Z. R.; Liu, Q. Y.; Guan, H. X.; Wang, Y. L. Microporous metal-organic framework with cage-within-cage structures for xenon/krypton separation. Ind. Eng. Chem. Res. 2022, 61, 7397–7402.

    Article  CAS  Google Scholar 

  53. Banerjee, D.; Simon, C. M.; Plonka, A. M.; Motkuri, R. K.; Liu, J.; Chen, X. Y.; Smit, B.; Parise, J. B.; Haranczyk, M.; Thallapally, P. K. Metal-organic framework with optimally selective xenon adsorption and separation. Nat. Commun. 2016, 7, ncomms11831.

    Article  Google Scholar 

  54. Li, J. L.; Huang, L.; Zou, X. Q.; Zheng, A. M.; Li, H. Y.; Rong, H. Z.; Zhu, G. S. Porous organic materials with ultra-small pores and sulfonic functionality for xenon capture with exceptional selectivity. J. Mater. Chem. A 2018, 6, 11163–11168.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22101004), the Natural Science Foundation of Anhui Province (No. 2008085QB62), and the Shanghai Science and Technology Committee (No. 19DZ2270100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Long Shan or Feng Luo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, WL., Xu, ML., Hou, HH. et al. Sulfonylcalix[4]arene-based metal-organic polyhedra with hierarchical porous structures for efficient Xe/Kr separation. Nano Res. 16, 2536–2542 (2023). https://doi.org/10.1007/s12274-022-4909-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4909-y

Keywords

Navigation